PERIYAR UNIVERSITY

NAAC 'A++' Grade - State University
NIRF Rank 56 - State Public University Rank 25
SALEM - 636 011, Tamil Nadu, India.

CENTRE FOR DISTANCE AND ONLINE EDUCATION
(CDOE)

MASTER OF SCIENCE IN MATHEMATICS
SEMESTER -1

ELECTIVE COURSE: ORDINARY DIFFERENTIAL EQUATIONS
(Candidates admitted from 2024 onwards)



PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)
M.Sc., MATHEMATICS 2024 admission onwards

ELECTIVE
Ordinary Differential Equations

Prepared by:

Centre for Distance and Online Education (CDOE)
Periyar University
Salem 636011



Contents

(1 Linear Equations with Constant Coefficients| 1
(1.1 Introductionl. . . . . . . . . . v i i e e e e 1
[1.2 The second order homogeneous equation| . ... ............. 2
(1.3 Initial value problems for second order equations| . . . . .. ... .... 4
(1.4 Linearly dependence and independence| . . . .. ............. 10

.................... 13
(1.5 The non-homogeneous equation of ordertwol . . . . . ... ... .... 14

2 Linear Equations with Constant Coefficients (Continued)| 27
[2.1 The homogeneous equationofordern| . . .. ... ... ... ...... 27
[2.2 Initial value problems for n-th order equations|. . . . . . ... ... ... 30
2.3 The non - homogeneous equation of ordernf . . . . . . ... ....... 38
2.4 A special method for solving the non-homogeneous equation|. . . . . . . 42

[2.4.1 Algebra of constant coefficient operators| . . . . .. ... ... .. 44

[3 Linear Equations with Variable Coefficients| 55
3.1 Introductionl. . . . . . . . v i i e e e e e e 55
(3.2 Initial value problems for the homogeneous equation| . . . . . ... ... 56

[3.2.1 Solutions of the homogeneous equation| . . . . .. ... ... .. 59
3.3 The Wronskian and [inear independence] . . . . ... ... ........ 61
3.4 Reduction of the order of a homogeneous equation| . . . . ... ... .. 66
3.5 Homogeneous equations with analytic coefficients|. . . . . ... ... .. 70
[3.6 The Legendreequation|. . . . . . . . . ... ... ..., 75

4 Linear Equations with Regular Singular Points| 87
4.1 Introductionl. . . . . . . . . ot v it e e e e e e e e e e 87
4.2 The Eulerequation| . . . . . ... ... .. .. ... ... .. .. . ..., 88
4.3 Second order equations with regular singular points-an example|. . . . . 95

[4.3.1 Second order equation with regular singular points - the general |

I CASE . . . . e e e e e e 99

[4.3.2 The exceptionalcases| . ... .. ... .. ... ... ....... 104
[4.4 The Bessel equation| . . . .. ... .. ... .. ... .. .. .. ..., 108
4.4.1 First kind of Bessel equation of order zero:|. . . . ... ... ... 108
4.4.2 Second kind of Bessel equation of order zero:| . . . ... ... .. 110

4.4.3 Bessel function of order avs . . . . . . . . ... ... ... 112




|5 Existence and Uniqueness of Solutions to First Order Equations| 127

[5.1 Introduction|. . . . . . . . . . . . . . e e 127
[5.2 Equations with variables separated| . . . ... ... ... ... ...... 128
5.3 EXacCt eqUAtIONS| . . . . v v v v v v e e e e e e e e e e e e e e e e e e 132
5.4 The method of successive approximation| . . . . . . . . ... .. ..... 137

[5.4.1 The Lipschitz condition] . . .. ... ................ 143

[5.5 Convergence of the successive approximation|

ii



SYLLABUS

Unit 1: Linear Equations with Constant Coefficients

Second order homogeneous equations - Initial value problems - Linear dependence and
independence - Wronskian and a formula for Wronskian - Non-homogeneous equation
of order two.

Unit 2: Linear Equations with Constant Coefficients (Continued)

Homogeneous and non-homogeneous equation of order n - Initial value problems -
Annihilator method to solve non-homogeneous equation - Algebra of constant coeffi-
cient operators.

Unit 3: Linear Equation with Variable Coefficients

Initial value problems - Existence and uniqueness theorems - Solutions to solve a non-
homogeneous equation - Wronskian and linear dependence - Reduction of the order
of a homogeneous equation - Homogeneous equation with analytic coefficients - The
Legendre equation.

Unit 4: Linear Equation with Regular Singular Points
Euler equation - Second order equations with regular singular points - Exceptional
cases - Bessel Function.

Unit 5: First Order Ordinary Differential Equations

Existence and uniqueness of solutions to first order equations: Equation with variable
separated - Exact equation - Method of successive approximations - The Lipschitz con-
dition - Convergence of the successive approximations and the existence theorem.

TEXTBOOK:
E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice-Hall
of India Ltd., New Delhi, 2011.



Unit 1

Linear Equations with Constant Coeffi-
cients

OBJECTIVE:

After the successful completion of this unit, the students are expected to recall the ba-
sic concept of linear homogeneous and non-homogeneous differential equations with
constant coefficients. Also, the solution of initial value problems for second-order
equations. In particular, we study linear independence and dependence results using
the Wronskian formula.

1.1 Introduction

In this unit, you will learn about the basics of linear equations with constant coef-
ficients and the second order homogeneous equations. A differential equation is an
equation which contains derivatives of one or more depended variables with respect
to one or more independent variables.

A linear differential equation with constant coefficients of order n has the form

where ag, a1, as, - - ,a, are complex constants with ag # 0, and b is a complex-valued
function on an interval I.
By dividing[1.1] by a¢ and assuming ay = 1, the equation [1.1] becomes

It will be more convenient to denote the differential expression on the left side of the
equation [1.2]as L(y). Thus

Ly) =y™ + ay"™ Y + agy™? + -+ any, (1.3)
and the equation [1.2] becomes simply L(y) = b(z).

Definition 1.1 If b(x) = 0 for all = € I, then the corresponding equation L(y) = 0 is
called a homogeneous equation, whereas if b(x) # 0 for some x € I, then the equation
L(y) = b(z) is called a non-homogeneous equation.



Definition 1.2 We denote L is a differential operator which operates on a function ¢
which have n derivatives on I, and the value of a function L(¢) at x is given by

L(@)(x) = " (@) + 10" V(@) + -+ + an(2).
As a result, we get
L(¢) = ¢ + a1V + -+ ang.

Definition 1.3 A solution of L(y) = b(x) is a function ¢ with n derivatives on I that

satisfy L(¢) = b.

Remark 1.1 If b is continuous on I, then it is possible to find all solutions of L(y) = b(z).

1.2 The second order homogeneous equation

First we consider the first order equation with constant coefficients
y' +ay =0, (1.4)

where a is a complex constant. Assume that ¢ is a solution of[1.4 Then

¢ +ap=0
= (¢ +ap) =0
= (e"¢) = 0.

Therefore e**¢(z) = ¢, for some constant c. Hence

o(x) = ce™ .

The constant —a in the above solution is the solution of the equation » + a = 0. We
have seen that the above method works for equation of the first order. Let us try it for
the second order homogeneous equation.

Theorem 1.1 Consider the equation
L(y) =y" + a1y + agy =0, (1.5)

where a, and ay are constants. If r; and ry are distinct roots of the characteristic polyno-
mial p, where
p(r) =r* + air + as,

then the functions ¢, and ¢, defined by
O1(x) = e Po(x) = ™ (1.6)

are solutions of L(y) = 0. If ry is a repeated root of p, then the functions ¢, and ¢, defined
by

P1(z) = €M7, @ox) = xe™® 1.7

are solutions of L(y) = 0.



Proof:

Let y = €' is a solution of L(y), where r is a constant. Then 3’ = re™,y"” = r2e’.
Then [1.5] becomes

L(e™) = rP 4 are™ + aye™ =0

— (P Har+a)e®=0

— p(r)e” =0

<~ p(r)=0 e"#0 (1.8)
Thus e is a solution of L(y) iff r is a root of the characteristic polynomial p(r).
Since p(r) = r* + a;r + ay is a polynomial of degree two, it has two complex roots,
namely, ; and r, (by the fundamental theorem of algebra). We have the following
two cases:
Case 1: Distinct roots (r; # r3)
If ; and r, are two distinct solutions of p(r), then e¢* and e™* are two distinct solu-
tions of L(y) = 0.
Case 2: Repeated roots (r; = r3)
We have

L(e™) = p(r)e"™, (1.9)

for all » and x. We recall that if r, is a repeated root of p(r), then p(r;) = 0 and
p'(r1) = 0. Differentiating[1.9| with respect to r will give us

0 0
Ll =¢*) == rT
() = roer)
L(ze™) =p'(r)e™ + p(r)ze™
=[p'(r) + ap(r))e™.
Now substituting » = r; in this equation we get L(ze™*) = 0, thus ze"? is another
solution in case r; = 7.
Result:
If ¢1, ¢ are any two solutions of L(y) = 0 and ¢, ¢, are the two constants ,then the

function ¢ = ¢1¢1 + 205 is also a solution of L(y) = 0.
Proof:

L(¢) = (c1¢n + c202)" + ar(c11 + c2¢2) + az(c1¢1 + c2692)
= 10 + oy + a1€19] + a1C20y + azci Py + axcady
= c1(¢] + a1 + agdr) + co(@y + a19h + az )
= c1L(¢1) + cal(¢h2)
= ¢1(0) + ¢2(0)
=0.

Example 1.1 Find all the solutions of the equation y" +y' — 2y = 0.

Solution:
Consider the equation y”+vy'—2y = 0. The characteristic polynomial is p(r) = r*+r—2.
Let p(r) = 0. Then

= r’+r—-2=0=r=-21
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The roots are —2,1. Therefore every solution ¢ has the form ¢(z) = cje™2® + cye?,
where c;and ¢, are constants.

Example 1.2 Find all the solutions of the equation y" + w?y = 0.

Solution:
The characteristic polynomial of the given equation y” + w?y = 0 is

p(r) = r? + W

Assuming p(r) = 0, we find that the roots of this polynomial are iw and —iw. Thus,
every solution ¢ takes the form ¢(z) = c;e™?® + cye ™7 where c;and ¢, are any two
constants.

Note:

(i) Taking ¢; =1, ¢, =1, we see that coswz is a solution.

1

(ii) Taking c¢; = 5

1,00 = —%i, we see that sin wz is a solution.

(iii) The equation 3” + w?y = 0 is known as the harmonic oscillator equation and is
used to examine oscillatory behaviour in a variety of physical contexts.

Let us sum up
1. We have introduced the second order homogeneous equation.
2. We have discussed the roots of the second order homogeneous equation.

3. We have discussed the distinct and repeated roots of the characteristic polyno-
mial p and it’s solutions.

4. Finally, we solved some illustrative examples.
Check your progress

1. The equation y” + siny = 0, y(0) = y(27); is
(a) linear (b) linear homogeneous
(c) linear nonhomogeneous (d) nonlinear

2. The harmonic oscillator equation is
@y +w*y=0 D)y —wy=0
@y —wiy=0 d)y" —w’y=0

1.3 Initial value problems for second order equations
The show that every solution of the equation
L(y) =vy" + a1y + asy = 0. (1.10)

is a linear combination of the solutions or [1.7] will depend on proving that the
initial value problems for this equation have unique solutions.

4



Definition 1.4 An initial value problem of L(y) = 0 is a problem of finding a solution ¢
satisfying

P(z0) = ¢'(z0) = 5, (1.11)

where x, is some real number, and «, $ are given constants. Thus we specify ¢ and its
first derivative at some initial point x,. This problem is denoted by

L(y) = 07 y(l’(]) =, y/($0) = B (112)

Theorem 1.2 (Existence Theorem)
For any real xy, and constants «, 3, there exists a solution ¢ of the initial value problem
I.12lon —o0 < 7 < oc.

Proof:
We prove that there are unique constants cy, ¢, such that ¢ = ¢1¢; + co¢5 satisfies|1.11]
where ¢, ¢, are the solutions given by[1.6/or[1.7] In order to satisfy the relations[1.11

we must have

c1¢1(x0) + cag2(x0) = (1.13)
19 (o) + cap(wo) = 8 (1.14)

and these equations will have a unique solution ¢y, ¢, if the determinant

| d(mo) (o)
A= (w)  dhlxo)

= ¢1(20)Py(w0) — @1 (o) Pa (o) # 0.
If T # T, then

P1(x) = €%, o) = €, ¢ (w0) = 110, Pl (wg) = roe”™
and

A — €T1x0T26T2$0 _ TlerlxoeT%EO

— o170 T2T0 _ . oTIT0 oT2T0

— (7”2 . Tl)e(m+r2)zo’
which is not zero, since e("1+72)%0 £ (),
If’l“l = T9, then

P1(x) = ™", go(x) = 2™, ¢ (20) = 1™, Py (20) = wor1E™TC + O
and

A = (€™70)(xorie™®0 4 €70) — (r1e"70) (xe™™?)

T1Z0 IorleTlmO + 67‘1"170 67‘110 -7 eTle xoeTle

€
— 6T1I0x0rlerlxo 4 e?rlxo o T1x062r1x0
(&

leo[ 7120 T1I0]

e 4 xorie — riTo€



— €2r1 0

£0.

As a result, the determinant condition is satisfied in both cases. Thus, if ¢;,c, are the
unique constants satisfying|1.13[and [1.14} the function

¢ =191 + 22

will be the desired solution satisfying
Note:
If b and ¢ are any two constants, then

0 < (bl —le)* = [b]* +|c|* — 2[b]|c]
= 2/bllc] < [b]* + | (1.15)

Theorem 1.3 Let ¢ be any solution of L(y) = 4" + a1/ + asy = 0 on an interval I
containing a point x. Then for all x in I

(o) lle™== < [lp(a)|| < [[@(wo) =0, (1.16)
where ||¢(x)|| =[|¢(2)|* + &' (2)P]'*, k = 1+ |ai| + |az|.

Proof:
Let
u(z) = [lo(x)|? (1.17)
u(@) = [6@) +1¢'(@)P
=066 +4¢

U= g0+ od +¢"¢ + ¢'¢’|
[/ (2)] = |6 (2)¢(x) + d(x)¢'(z) + ¢" ()¢ (x) + &' (2)¢" ()]

<&/ @)l|o(@)] + [¢(@)[|¢' ()| + [¢" (2)||¢' ()] + |¢' (2)[1¢" ()]
< |¢'(@)lo(@)] + |o(@)]1¢'(2)] + [&" (2)]|¢' ()] + |¢' ()] |¢" ()]
< 2|¢"()l[o(x)] + 21 (2)]|¢" ()] (1.18)

=la=x,]

% [ y=llg(xo)lle



Since ¢ satisfies L(¢) = 0 we get ¢" + a1¢' + ax¢p = 0.
Hence

6" ()] < laa[l¢(2)] + |azl|é(z)]. (1.19)
Using [1.19)in[1.18| we have

W' (z)] < 2|¢(2)||¢" ()] + 2|¢" () [|ar[|¢' ()| + |azl|p(2)]]
< 2|¢(x)||¢' ()] + 2|¢' ()l |aa[|¢' ()| + 2|9 ()| az]|$ ()]
< 2[p(@)||¢' ()] + 2lar[|¢' ()* + 2|0/ ()] |az| |6 (2)]

< 2[¢(x)l|¢/ ()] + 2|¢' ()| azl|p ()] + 2|ar]|¢' ()]
< 2[¢@@)||¢'(@)I[ 1+ laz| ]+ 2]ai|¢'(z)]*
< 2(1 + laz])|@()||¢/ (2)] + 2] [|¢' (). (1.20)

Take b = ¢(z) and ¢ = ¢/(z) in[1.15| we get the following inequality
2|¢(2)|l¢' ()] < lo(2)[* + ¢ (2)[*.

Equation becomes
[/ ()] < 1+ Jaz|(Jo(@)[* + [ (x) ) + 2|a[|¢' ()]
< (1+ lazD)lo(@)]* + (1 + laz])|¢' (2)* + 2las||¢'(2) [
< (L+ |az))|o(@)]* + |¢/ () P[1 + |as| + 2las]
< 2(1 + Jaa| + |az)[Jo(@)[* + |¢' ()]
< 2(1 + |aa| + |az]) | ¢(2)]”
W' ()] < 2ku(x).
This is equivalent to
—2ku(z) < u'(x) < 2ku(x). (1.21)

Now consider the right inequality of

v (z) < 2ku(x)
— u —2ku <0.

Then it is equivalent to
e (' — 2ku) = (e"*u)" < 0.

Suppose that x > x,. If integrate from z, to x, then we get

e~ 2y (x) — e 2oy (z0) < 0
672k‘ru(1‘) < eka:pou(l,O)
u(z) < u(wg)e2k @0
lo(2)]* < flé(ao)||?e* )
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lo(x)]| < ||p(z0)||eF@20) for o > xq. (1.22)
Similarly the left inequality of will give us

—2ku(x) < u'(x)
|p(x0)||e F==m0) < || p(a)|| for @ > . (1.23)

Now, combining the inequalities [1.22] and [1.23| we get

6 (o) lle™=) < [lg(2)[| < [[p(wo) €~ for & > . (1.24)

A consideration of for the case © < x, together with an integration from x to x
yields

|’¢<l’0)||ek(z—x0) < H¢(.§L’)“ < ”¢<x0)‘|efk(xfx0) for = < . (125)
Now, combining the inequalities [1.24] and [1.25] we get
¢ (o) [l =0l < Jlp()[| < [l (o) [0,

Remark:
Geometrically the inequality says that ||¢(z)|| always remains between the two
curves y = [}zl e"=! and y = [o{zo)lle~H= .

Theorem 1.4 (Uniqueness Theorem)
Let o, 8 be any two constants, and let xy be any real number. On any interval I containing
xg there exists at most one solution ¢ of the initial value problem

L(y) =0, y(wo) =a, y'(xo) =B

Proof:
Suppose that ¢ and 1) are two solutions of L(y) = 0. Then

7¢($0) = Q, ¢/($0) = B and
ﬂﬂ(xo) = @,¢/($0) = ﬁ

0
0
Let x = ¢ — . Then
L(x) = L(¢) = L(¢)) = 0 and x(zo) = 0,X'(x0) = 0.
Therefore || x(x¢)|| = 0. By the existence theorem we have
Ix(@o) e =70l < (@) < lIx(wo)[le*===0!. (1.26)
Thus ||x(z)|| = 0, Vz € I. This implies x(x) = 0, Vz € I. Since y = ¢ — v, we obtain

¢(x) — ¢ (x)
¢(x

0, Vx e,
Y(x), Vel
.

)
— ¢

Hence proved the uniqueness theorem.



Theorem 1.5 Let ¢, ¢ be the two solutions of L(y) = 0 given by[1.6]in case 1 # ro, and
by[1.7]in case 1 = ro. If c1,c2 are any two constants, then the function ¢ = ci¢; + cagy
is a solution of L(y) = 0on — oo < z < oo. Conversely, if ¢ is any solution of L(y) =
0 on — oo < x < o0, then there are unique constants cy, ¢, such that ¢ = c1¢1 + ca¢s.

Proof:

First we prove ¢ = c¢;¢;1 + c205 is a solution of L(y).

Given ¢, ¢, are the solutions of L(y) = 0. Then L(¢;) = 0 and L(¢2) = 0.
Since L(y) = y" + a1y’ + asy and ¢ = c¢1¢1 + capo, We get

L(¢) = ¢" + ar¢ + az¢)
= (c1¢1 + c202)" + ar(c101 + c2¢2) + az(cr1 + c2602)
= 1@ + cady + arc1@) + arcady + ac1 1 4 axcaty
= c1[¢] + ar¢) + axdr] + ca Pl + a1 ¢y + azdy]
= c1L(¢1) + c2L(2)
=0 " L(¢1) = L(¢2) = 0.
Hence the function ¢ is a solution of L(y) = 0.
Conversely, assume that ¢ = c1¢1 + c2¢» is a solution of L(y) = 0. Let z, be any
real number and «, 5 be two given constants. In the proof of existence theorem we

showed that there is a solution ¢ of L(y) = 0 satisfying ¢ (z¢) = «,¢'(x¢) = [ of the
form

) = c1¢1 + o,

where ¢, ¢ are uniquely determined by «, 5. By uniqueness theorem ¢ = 1. Hence
the proof.
Let us sum up

1. We have discussed the existence and uniqueness theorem of the initial value
problem.

2. We have proved the two solutions of L(y) = 0, then the linear combination of
those two solutions is also a solution of L(y) = 0.

3. Finally, we solved some illustrative examples.
Check your progress

3. Consider the initial value problem, v’ = y?,4(0) = 1, (z,y) € R x R. Then there
exists a unique solution of the IVP on

(@) (00, <) (b) (—o0, 1) (0 (-2,2) (d) (-1,00)
4. The solution of the differential equation 5y” + 3y’ = 0 is given by

(@) y = c1e™ + e (b) y =c1 +ce75"

(©) y = (c1 + com)e™ (d) y = 1% 4 cpe 3"

5. State the existence theorem for solutions of a second order initial value problem,
with constant coefficients.

6. State the uniqueness theorem for solutions of a second order initial value prob-
lem, with constant coefficients.



1.4 Linearly dependence and independence

Definition 1.5 Two functions ¢, ¢, defined on an interval I are said to be linearly
dependent on I, if there exist two constants cy, co, not both zero, such that

c101(x) + cap(x) =0, Yo el

Definition 1.6 The functions ¢, ¢, are said to be linearly independent on I, if they are
not linearly dependent there. That is, if the only constants c;,ce such that c;¢(x) +
capo(x) =0, V o € I are the constants ¢; = 0,c3 = 0.

Example 1.3 The functions ¢1(x) = "%, ¢po(x) = €™ are linearly independent on any
interval 1.

Solution:
Suppose c1¢1(z) + caga(x) =0, Vo € I. Then

e + e =0, Vel (1.27)
Multiplying the above equation by e~ "% we get

c1e’ + cpel g =0

— ¢ + el = (1.28)
Differentiating the last equation with respect to = we get
ea(ry — rp)el T = 0,

Since 7y — 71 # 0 and e(™~")? - () we have ¢, = 0. Substituting ¢, = 0 in the equation

will give us ¢; = 0.

Hence ¢; and ¢, are linearly independent.

Example 1.4 The functions ¢, = e"™* ¢o(x) = xe™* are linearly independent on any
interval I.

Solution:
Suppose ¢1¢1 () + co¢p2(x) = 0. Then

c1€™ 4+ coxe™™ = 0. (1.29)
Multiplying the last equation by e~ "' we get

c1€” + o€’z = 0

c1 + cox = 0. (1.30)

Differentiating with respect to x will give us ¢o = 0. By substituting ¢, = 0 in
we obtain ¢, = 0.
Hence ¢, and ¢, are linearly independent.

10



Definition 1.7 Let ¢, ¢5 be two solutions of L(y) = y"+a1y'+asy = 0. The determinant

= P10y — D102

is called the Wronskian of ¢y, ¢,. It is a function, and its value at = is denoted by

W (o1, p2)(x).

Theorem 1.6 Two soutions ¢, ¢s of L(y) = 0 are linearly independent on an interval [
if and only if W (¢1, ¢2)(z) # 0, Va € L.

Proof:

Suppose that ¢y, ¢, are two solutions of L(y) = 0 such that W (¢q, ¢2)(x) # 0, Va € I.
To prove: ¢, ¢, are linearly independent on an interval /.

Let ¢y, ¢ be two constants such that

Cl¢1($) + 02¢2($) = 0, Vel (131)
Then
101 (x) + caghy(x) =0, Vo e 1. (1.32)

Now, for a fixed = the equations [1.31] and [1.32] are linearly homogeneous equations
satisfied by ¢, co. Then the determinant of the coefficients of the equations and
[L.32lis

d1(x)  P2()
¢ (z)  ds(z)

Thus ¢; = ¢ = 0 and hence ¢, ¢, are linearly independent solutions on /.
Conversely suppose that ¢, ¢, are linearly independent on /.

To prove: W (g1, ¢o)(z) #0, YV € 1.

Suppose that W (¢, ¢2)(xo) = 0 for some z, € I.

Then

'=W(¢1,¢2><x> L0, Vrel

¢1($0) ¢2($0)

/ / =0.
¢ (o)  Py(xo)
This implies that the system of two equations
c1¢1(x0) + capa(x0) =0 (1.33)
19 (%0) + cagy(w9) = 0 (1.34)

has a solution ¢y, ¢, where at least one of these numbers is not zero. Let ¢;, ¢, be such a
solution and consider the function i) = ¢;¢1 + cago. Now L(¢0) = ¢1 L(¢p1) +caL(¢p2) =0
and

Y(x0) = c1¢1 (o) + caa(zo)
V' (z0) = c1¢)(z0) + oy ().
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Thus we have, L(¢) = 0, ¥(z9) = 0, ¢'(zo) = 0. By uniqueness theorem 1 is
the unique solution of the initial value problem, L(y) = 0, y(z¢) = 0, v'(zo) = 0.
Therefore ¢ (z) = 0, Vo € I and thus ¢;¢1(z) + ca¢2(x) = 0,V € 1.

Then we have ¢; and ¢, are not both zero such that

c101(x) + caga(x) = 0, Vo € I,

which is a contradiction to the fact that ¢; and ¢, are lineraly independent. Therefore
W (é1, ¢a)(z) # 0, Vo € I.

Theorem 1.7 Let ¢, ¢o be two solutions of L(y) = 0 on an interval I and let x, be any
point in I. Then ¢y, ¢ are lineraly independent on I if and only if W (¢1, ¢2)(x) # 0.

Proof:

Suppose that ¢;, ¢, are linearly independent solutions of L(y) = 0 on /.
Then by theorem (1.6)

W(¢1, gbg)(l’) #£0,Vx € 1.

Since, ¢ in I, then we have W (¢y, ¢2)(xg) # 0.

Conversely,

Suppose W ¢y, ¢o)(x) # 0.

To prove:

¢1, ¢ are linearly independent.

Let ¢; and ¢, be any two constants such that

c191() + capa()
16 (2) + cadp ()

0
0

Vo e 1.
In particular ,

c1¢1(x0) + capa(x9) =0
c197 (o) + oy (o) = 0.

Then the determinant of coefficient in the above equation,

¢1(0)  Pa(z0)

Shiz) dyla) |7 V000N O

= C] = C = 0.
Therefore ¢; and ¢, are linearly independent on /.

Theorem 1.8 Let ¢, , ¢, be any two linearly independent solutions of L(y) = 0 on an
interval I. Every solution ¢ of L(y) = 0 can be written uniquely as ¢ = c1¢1 + ca¢po, Where
1, Co are constants.

Proof:

Given ¢ = ¢1¢; + ca¢o be solution of L(y) = 0, where ¢, ¢, are constants. Let zy be any
point in /. Since ¢y, ¢ are linearly independent on I, we have W (¢y, ¢2)(zo) # 0. Let
o(xo) = a, @' (x9) = 3, and consider the two equations,

c1¢1(wo) + cada(w0) =

12



10 (o) + cady(w0) = B,

where ¢y, ¢, are constants. Since the determinant of the coefficients of ¢y, ¢ is

W (g1, ¢2) (o) # 0,

there is a unique pair of constants ¢y, ¢, satisfying these equations. Choose ¢;, ¢; to be
these constants. Then the function ¢ = c¢;¢1 + co¢5 is such that

U(wo) = p(w0), V(7o) = ¢'(0), and L(y) = 0.

From the uniqueness theorem it follows that ¢y = ¢ on I, that is, ¢ = c;¢1 + ca¢s.
Note:

The importance of the previous theorem is that we need only to find any two
linearly independent solution on of L(y) = 0 in order to obtain all solution of L(y) = 0.
For example, the equation 3” + y = 0 has the two solution ¢*, e~**, which are linearly
independent, but it also has the two linearly independent solutions cos z, sin x.

1.4.1 A formula for the Wronskian

Theorem 1.9 If ¢y, ¢, are two solutions of L(y) = 0 on an interval I containing a point
T, then

W (1, ¢2)(x) = e W (1, o) (o).

Proof:
Consider L(y) = y" + a1y’ + asy = 0.
Since ¢, and ¢, are solutions of L(y) = 0, we have L(¢,) = 0 and L(¢,) = 0. Then

T+ a1d) +aspy =0 (1.35)
b+ axdy 4 azpy = 0. (1.36)
Multiply equation [1.35|by —¢, will give us
= —¢{ds — a1¢)ds — az1¢2 = 0. (1.37)
Multiply equation [1.36] by —¢; will give us
= b1 + a1P1dy + agprpe = 0. (1.38)
Adding and we get
(¢301 — ¢ ¢2) + ar(1¢ — ¢1¢2) = 0. (1.39)
o1 P2

Let W = W(¢1,¢2) =
equation becomes

= 010 — ¢ 1do and W' (o1, ¢2) = 195 — ¢¢po. Then

P
w’ + G1W = O,

and W satisfies the first order equation. Thus
W(z) = ce” ™7,

13



where c is some constant. Let z = z,. Then
W(xy) = ce” %0,

or
c = "W (x9),

and
W(zx) = e"™0e™ "W ()
W(z) = e” @207 (z,).

Hence proved.
Let us sum up

1. We have defined the linearly dependent and independent of a function with some
examples.

2. We have discussed the Wronskian definition and formula.
3. We have stated and proved Abel’s formula theorem.
4. Finally, we figured out some illustrative examples.

Check your progress

7. Which of the following are linearly independent functions.

(@) ¢1(x) =, ¢o(x) = €, r is a complex constant,
(b) ¢1(x) = cosx, o(x) = 3(e* + )
(@ ¢1(z) = 2%, ¢o(x) = 52
(d) ¢1(x) = sinz, gg(x) = 4i(e™® — e7)
8. The Wronskian of the functions ¢, (z) = 2%, ¢o(z) = ba? is
@2 O ©0 @3

9. Define linear independence and dependence.

10. Define Wronskian of two functions ¢, and ¢,.

1.5 The non-homogeneous equation of order two

Theorem 1.10 Let b be continuous on an interval 1. Every solution 1 of L(y) = b(z) on
I can be written as ¢ = 1, + c1¢1 + c2¢2 Where 1), is a particular solution. ¢, ¢, are two
linearly independent solutions of L(y) = 0, and ¢, ¢, are constants. A particular solution

1, is given by T [ pr(£)da(x) — b1 ()2 ()]B(2)
Yp(z) = /mo : 2W(¢1,;2)(t)2 “

conversely every such wis a solution of L(y) = b(z).
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Proof: Consider the non-homogeneous equation of order two
L(y) = y" + a1y’ + azy = b(x),

where b is some continuous function on an interval /. Suppose we know that 1, is a
particular solution of this equation, and that ¢ is any other solution. Then,

Y =1, + 191 + 202
Y — 1, =191 + 292
L(Y —p) = c1L(¢1) + c1L(¢o)
L($) = L(ty) = b—b=0.

This shows that i) — 1), is a solution of the homogenous equation L(y) = 0.
Therefore ¢; and ¢; are linear independent solutions of L(y) = 0, there are unique
constants such that ¢ — v, = c1¢1 + c202

W =1y + 101 + cago.

In other words, every solution v of L(y) = b(x) can be written in the form

=1, + 101 + 0.

We see that the problem of finding all solutions of L(y) = b(x) reduces to finding a
particular one ¢, and two linearly independent solution ¢, ¢2 of L(y) = 0.

If L(v,) =band L(¢1) = L(¢2) = 0 and ¢y, ¢, are any constants, then

Y =1, + 11 + c209 satisfies L(¢p) = b.

To find a particular solution of L(y) = b(z) we reason in the following way.

Every solution of L(y) = 0 is of the form c;¢; + cy¢o Where ¢y, c; are constants and
¢1, o are linearly independent solutions.

Such a function ¢;¢; + c2¢5 can not be a solution of L(y) = b(x) unless b(z) =0 on I.
However, suppose we allow ¢y, ¢, to uy, us (not necessarily constants) on /, and then
ask whether there is a solution of L(y) = b(x) of the form u;¢; + us¢, on I.

This procedure is known as the Variation of constants.

We have a solution of L(y) = b(z) of the form u,¢; + us¢p, where wuy, uy are functions.

L(y) =y" + a1y’ + asy = b(x).

L{uipy + uzga) =(ury + uzda)” + ar(urr + uaga)' + az(ury + uzg) = b(x)
(Ui o1 +wrdy + usde + usds) + ar(wrdy + U1 + usdy + Usgo)
+ az(u1¢1 + uza) = b(x)
=uy @) + uidr + U By + wr B + usds + uydy + usdy + usd
+ a1 (w1 ¢y + Uy + Uady + usdy) + as(urdy + usga) = b(z)
=u1[$] + a1y + 2] + ua[dy + a1y + azge] + 2[u) ¢ + u))]
+ ay[uy By + upgo] + uidy + usps = b(x)
ur L(¢1) + uaL(¢a) + w1 + uyda + uyde + 2[uw) ¢y + uhds] + an[u)dr + uyds] = b

15



Since ¢, ¢ are solutions of L(y) =0
L(qf)l) =0 and L<¢2> =0

w1 + uyds + 2[uy ¢ + usds] + arujdr + uhes
if
Uy 1 4 uydy =0
Differentiate with respect to x
U1 + Uy + usds + updh =0
Uy P+ Uyt = —(uy By + upgh).
Substitute (1.42) and the above equations in (1.41)

it + ity = b

(6.2)"01 = uig1¢) +uyedy =0
(6.4)"01 = uydior + urdyr = bo
subtracting the equations we get
— Uus(Phd1 + dag) = —ib
— uy. W (g1, p2) = —nb

u/ — leb
? VV(¢17¢2)7

substitute (1,44) in (1.42)

u’1¢1 + U/2¢2 =0
¢1b

uy P + —W(¢1,¢2)¢2 =0
/ _ ¢1b
uy P = —W<¢1,¢2)¢2
u, = b o
L W)

In order to obtain uy, uy all we have to do is to integrate.
Let zp € I and x > z7 Now integrate from x, to z,

w= [ W™
/ W ¢1,¢2t))(t "

We know that the particular integral is
Up = w1 (x) + ur1(2)

16

=b

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)



[T ee)b()
=) Wi, ¢2 Wion, o) 0@ / W¢1,¢2 Wion, o)) 102@)

o1 (t <Z52 ¢2( )o1()
/ o

Hence proved the theorem.

Example 1.5 Solve L(Y') = b(z) in the case p(r) = r? 4+ air + ay has two distinct roots
r1,T9.

Solution:

Let L(y) = v + a1y + asy = b(x). Given p(r) = r? + ayr + ay has two distinct roots
r1,79. Therefore ¢ (z) = €™ and ¢y (x) = €"* are solutions of L(y) = 0. The particular
solution v, of L(y) = b(x) is of the form

1 (t ¢2 — ¢a(t)d1(2)
/ ¢1 b(t)dt.

2)(t)
Here ¢, (t) = ™" and ¢o(t) = ™!
1(t)  ¢a(t)
(¢17 ¢2 ‘ ¢’1 ¢2/(t) ‘
erit er2t

r 67‘1t Ty 67‘2t

— T2€7‘2t67“1t o rlentergt
— T2€(T1+7’2)t _ Tle(T1+r2)t
_ (rit+ro)t

= el ) (rg —m1)

x erltergx _ erlxergt
o, = / b(t)dt
T

Ty )

1 x
= / [emterzz . erwemt]6—(r1+r2)tb<t>dt
o — T
1 ’ rox—rat rix—rit
e e —e [b(t)dt
zo
1 x
Y = o — T / [e"(x — 1) — " (x — 1)]b(t)dt.
zo

The complete solution is

Y= ¢y + 191 + 202

1 xX
)= / leh(z —t) — el (z — t)]b(t)dt + c1e™” 4 coe™”
To =71 Jay

Note:
Suppose we have the solution of L(y) = b(z) of the form w;¢; + uspo where wuy, uy are
functions. Then w/, u/, satisfy the equation,

Pruy + pouy = 0 and ¢iuy + dyuy =

17



Let us sum up

1.

2.

3.

We have characterized the non-homogeneous equation of order two.

We have rectified the particular solution of the non-homogeneous equation of
order two using the Wronskian formula.

Finally, we figured out some illustrative examples.

Check your progress

11. If ¢; and ¢, are any two solutions of y” + a1y’ + asy = b(z), where a4, ay are
constants and b(x) is continuous function on 7, then which of the following is a
solution of the corresponding homogeneous equation?

@ ¢1+¢2 (b)) o1 — P2 (0 Yp(x) + 1 +¢2 (d) None of these

12. The equation is y" + yy’ = x*

(a) linear (b) nonlinear (c) quasi linear  (d) semi-linear
Summary

The focus shifts to solving linear ODEs with constant coefficients, with an emphasis
on finding general solutions. Topics covered are:

The concept of the characteristic equation is introduced to find general solutions.
Distinct real roots, repeated roots, and complex roots.

Explores second-order linear differential equations, both homogeneous and non-
homogeneous.

An initial values problem for the second order equation consist of finding a solu-
tion of the differential equation that also satisfies initial conditions.

Introduction to Wronskian and its use in determining linear dependence and
independence of solutions.

Solving non-homogeneous equations using the method of variation of parame-
ters.

Glossary

Differential equation: An equation which contains derivatives of one or more
depended variables with respect to one or more independent variables.

Linear homogeneous second order equation: A linear homogeneous second order
equation with variable coefficients can be written as, y» + a,(z)y + as(x)y = 0,
where a,(x) and as(z) are continuous functions on the interval [a, b].

Linearly dependent: When there is non-zero constants ¢; and ¢, for which the
given equation will also be true for all = then we call the two functions linearly
dependent.
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e Linearly independent: When there is only two constants for which the given equa-
tion is true for ¢; = 0 and ¢, = 0 then we call the functions linearly independent.

e Wronskian: The Wronskian is a determinant used to check if functions are lin-
early independent. If the Wronskian is non-zero, the functions are independent;
if zero, they might be dependent.

Self-assessment questions

1. The set of linearly independent solutions of the differential equations W — ZTZ =
0is
(@ {1,z,e*, e "} (b) {1, z,e " ze "}
(o) {1, x,e", xe*} (d) {1, z,e", xze "}

2. The solution of the differential equation 3" + y = 0 satisfying the
condition y(0) = 1,y(5) = 2 s
(@) p =cosx+2sinx (b) ¢ =cosx +sinx
(c) p =2cosx +sinx (d) ¢ =2cosx +2sinz

3. Let ¢; and ¢, defined on [0,1] be twice continuously differentiable functions
satisfying v + ¢ +y = 0. Let W (x) be the Wronskian of ¢, and ¢, and satisfy
W(3) = 0. Then
(@) W(z) =0forz € 0,1] (b) W(zx) # 0 for x € [0, 1]

() W(z) >0forz e (3,1] (d) None of these.

4. Consider the ordinary differential equation y” + P(x)y + Q(x)y = 0, where P
and Q are smooth functions. Let ¢; and ¢, be any two solutions of the above
equation. Let I be the corresponding Wronskian. Which of the following is
always true?

(a) If 91 and ¢, are linearly dependent then there exist x1,z, such that W (x;) =0
and W (zy) # 0.

(b) If ¢; and ¢, are linearly independent then W (z) = 0 V&

(c) If ¢; and ¢, are linearly dependent then W (z) # 0 V&

(dDIf ¢, and ¢, are linearly independent then W (z) # 0 Vx

5. Let ¢; and ¢, form a complete set of solutions to the differential equation y"” —
2xy + sin(e? )y = 0, x € [0,1] with ¢,(0) = 0, ¢/ (0) = 1, $2(0) = 1, ¢4(0) = 1.
The Wronskian W (x) of ¢;(z) and ¢o(x) at z = 0 is

(a)e? (b)—et (c)—e? (de
6. Which of the following are linearly independent functions.
(@) ¢1(z) =z, po(x) = €™, ris a complex constant,
(b) ¢1(x) = cosz, oz ) 3(e™ + )
(© ¢1(w) =27, ¢a(x) = 52
(

M)@aﬂzlmm@uﬂz@@”—e”)

7. Consider the initial value problem in R?, /(t) = Ay + By; y(0) = 1o, where
A= { 11 ﬂ ,B = {(1] _11} Then y(t) is given by
(@) e~tetBy (b) etBetdy () et By, (d) e="A+Bly,
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10.

2.

Let V' be the set of all bounded solution of the ODE y"(x) — 4y'(z) + 3y(z) = 0,
x € R. Then V

(a) is a real vector space of dimension 2.

(b) is a real vector space of dimension 1.

(c) contains only the trivial solution.

(d) contains exactly two solutions.
Let ¢; and ¢, defined on [0,1] be twice continuously differentiable functions
satisfying v + ¢ +y = 0. Let W(x) be the Wronskian of ¢; and ¢, and satisfy
W(3) = 0. Then

(@) W(z) =0forz €0,1] (b) W(z) # 0 for x € [0, 1]

() W(z) >0forz e (3,1] (d) None of these.

If ¢1,¢, are linearly independent with two solution L(y) = 0 on interval I and z,
be any point on I if and only if,

@W (¢, ¢5) # 0 DIYW (1, ¢2) # 0
QW (1, ¢5) =0 (DW(¢1,¢2) =0
EXERCISES

. Find all solutions of the following equations:

@ y" —4y=0

() 3y"+2y' =0

(© "+ 16y =0

(d) y"=0

(e v'+2iy +y=0

D vy -4y +5y=0

(8 ¢+ (3i — 1)y — 3iy = 0.
Consider the equation 3" + ¢’ — 6y = 0.

(a) Compute the solution ¢ satisfying ¢(0) = 1, ¢'(0) =
(b) Compute the solution v satisfying (0) = 0,%'(0) =
(c) Compute ¢(1) and (1).

3. Find all solutions ¢ of ¢y’ + y = 0 satisfying:

4.

(@) ¢(0) =1,¢(r/2) =
() ¢(0) =0,¢(7) =0
(@ ¢(0) =0,¢'(r/2) =0
(d) ¢(0) =0,¢(r/2) = 0.

Consider the equation y” + k*y = 0, where k is a non-negative constant.
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(a) For what values of k£ will there exist non-trivial solutions ¢ satisfying
@ ¢(0) =0, ¢(w) =0,
(i) ¢'(0) = 0,¢'(m) =
(iii) ¢(0) = ¢(m), ¢'(0) = ¢'(m),
(iv) ¢(0) = —¢(m), ¢'(0) = —¢'(m)?.

(b) Find the non-trivial solutions for each of the cases (i)-(iv) in (a).

5. Find the solutions of the following initial value problems:
(@ y" -2y —-3y=0, y(0) =0, y(0) =1,
(b) y”+(4i+1)y +y=0, y(0 )—0, y'(0 ) 0,
(@ y" + (3i — 1)y’ — 3iy = 0, y(0) =2, y'(0) =0,
(A y" + 10y =0, y(0) = 7, y'(0) = 7°.

6. Let I be the interval 0 < z < 1. Find a function ¢ which has a continuous
derivative on —oco < x < oo, which satisfies

y'=0€el
y" + k*y = 0 outside I, (k> 0),

and which has the form
¢($) — eikx_i_Aefikm, (.’E < 0>’

and
o(x) = Be™, (x> 1).

Determine ¢ by computing the constants A and B, and its values in /.

7. The functions ¢, ¢, defined below exist for —oco < z < oco. Determine whether
they are linearly dependent or independent there.

@ o¢1(x) =2 gbg( ) = €’?, r is a complex constant
(B) 61(x) = cosz, ¢al) = sina

(© ¢1(x) = 2%, do(x )251‘2

(d) ¢1(z) =sinz, go(x) =

(e) ¢1(x) = cosx, o(x) = ( w4 e

(D ¢1(x) =z, do(x) = [2].

8. Are the following statements true or false 7 If the statement is true, prove it; if it
is false, give a counterexample showing it is false.

(@) "If ¢, ¢y are linearly independent functions on an interval 7, they are lin-
early independent on any interval J contained inside /."

(b) "If ¢y, ¢ are linearly dependent on an interval I, they are linearly dependent
on any interval J contained inside /."

(c) "If ¢4, ¢ are linearly independent solutions of L(y) = 0 on an interval I,
they are linearly independent on any interval J contained inside 7."
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10.

11.

(d) "If ¢1, ¢, are linearly dependent solutions of L(y) = 0 on an interval I, they
are linearly dependent on any interval .J contained inside /."

(a) Show that the functions ¢y, ¢ defined by

pr(z) = 2%, ¢o(x) = x|z,

are linearly independent for —oco < = < 0.
(b) Compute the Wronskian of these functions.

(c) Do the results of parts (a) and (b) contradict Theorem 1.6? Explain your
answer.

(a) Let ¢,, be any function satisfying the boundary value problem

y' +n*y =0, y(0) =y(27), ¥(0) = /' (27), (1.45)
where n =0, 1,2, - - -. Show that

" ul) () = 0

0

if n # m. (Hint: —¢! = n?¢,,and —¢” = m?¢,,.Thus
(n2 - m2>¢n¢m = Qﬁngb;,n - ¢m¢§§ - [gbngb;n - gbm(éib]/

Integrate this equality from 0 to 27, and use the boundary conditions satis-
fied by ¢,, and ¢,,).

(b) Show that cosnz and sinnx are functions satisfying the boundary value
problem The result of (a) then implies that

2m 2m
/ cos nx cos mxdxr = 0, / cos nx sinmaxdxr = 0,
0 0

2m
/ sinnz sinmazdx = 0, (n # m).
0

(a) Show that ¢, (z) = sinnx satisfies the boundary value problem
y'+n’y =0, y(0)=0, y(r) =0,
wheren =1,2,- - -.
(b) Using (a) show that
/ sin nx sin maxdx = 0,
0

if n # m. (Hint: See, Ex. 5 (a)).

(c) Prove that for any positive integer n, ¢, - - -, ¢,, are linearly independent on
0 <z < 7. (Hint: Suppose ai¢; + - - - + a,¢, = 0. Multiply both sides of
equality by ¢, (k fixed between 1 and n) and integrate from 0 to 2x. Use
(b)).
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12. Let ¢y, ¢o, be two differentiable functions on an interval 7, which are not neces-
sarily solutions of an equation L(y) = 0. Prove the following:
(a) If ¢y, ¢y are linearly dependent on 7, then W (¢y, ¢2)(z) = 0 for all z in /.

(b) If W (¢, p2)(x) # 0 for some x, in I, then ¢1, ¢, are linearly independent on
1.

(c) W (¢, p2)(x) =0 for all z in I does not imply that ¢;, ¢, are linearly depen-
dent on [.
(d) W(¢1,¢2)(x) = 0 for all x in I, and ¢(z) # 0 on I, imply that ¢, ¢, are
linearly dependent on /. (Hint: Compute (%)’).
13. Find all solutions of the following equations:

(@) v’ +4y = cosx

(b) 4"+ 9y =sin3x

(@ y'+y=tanz, (—7/2 <z < 7/2)
(d v +2iy +y==x

(&) v" — 4y + by = 3e % + 222

) v"—Ty + 6y =sinzx

(g) v' +y=2sinxsin2z

(h) " +y=secx,(—7/2 <x <7/2)
D 4y —y=e"

() 6y" + 5y — 6y = .

14. Let L(y) = ¥" + a1y’ + aoy, where a,, ay are constants, and let p be the character-
istic polynomial p(r) = r? + a1r + as.

(a) If A, o are constants, and p(«) # 0, show that there is a solution ¢ of L(y) =
Ae® of the form ¢(x) = Be®, where B is a constant. (Hint: Compute
L(Be™™)).

(b) Compute a particular solution of L(y) = Ae® in case p(«) = 0 (Hint: If B, r
are constants compute L(Bxe™), and then let r = «).

(c) If ¢, are solutions of
L(y) = bi(z), L(y) = ba(x),
respectively, on some interval 7, show that y = ¢ + ¢ is a solution of
L(y) = bi(x) + ba(x)

on /.

(d) Suppose Ay, Az, oy, are constants, and p(a;) # 0, p(az) # 0. Find a
solution of
L(y) = A% + Aje™™.
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15. Consider
L(y) =y" + a1y + agy,
where ay, a, are real constants. Let A,w be real constants such that p(iw) # 0,
where p is the characteristic polynomial.

(a) Show that the equation L(y) = Ae¢™* has a solution ¢ given by

A
¢ ) = ' ez(wx—a)7
= o
where p(iw) = |p(iw)|e™.

(b) If ¢ is any solution of L(y) = Ae™?, show that ¢, = Re ¢, ¢, = I'm ¢ are
solutions of

L(y) = Acoswz, L(y) = Asinwz,
respectively.

(c) Using (a), (b) show that there is a particular solution ¢ of
1
Ly + Ry + oy = E coswz,

where L, R, C, E, w are positive constants, which has the form ¢(z) = B cos(wz—
a). (Note: L is a constant here, and not a differential operator.)

(d) Suppose that R?C' < 2L in (c). For what value of w is B a maximum? (Note:
This w is often referred to as the resonance w).

16. Consider the equation 3" + w?y = A coswx, where A, w are positive constants.

(a) Find all solutions on 0 < z < oo.

(b) Show that every solution ¢ is such that |¢(z)| assumes arbitrarily large val-
ues as x — oo.

(c) Sketch the graph of that solution ¢ satisfying ¢(0) = —0, ¢'(0) = 1.

Answers for check your progress

1.(d 2. (@ 3.( 4. (b

5. For any real z(, and constants «, 3, there exists a solution ¢ of the initial value
problem L(y) =0, y(zo) =, y'(zo) = . 0n —oo <z < 0.

6. Let o, 5 be any two constants, and let xy be any real number. On any interval /
containing x, there exists at most one solution ¢ of the initial value problem

L(y) =0, y(zo) =, y'(x0) = B.

7. (a) 8. (c)
9. Linearly dependent : Two functions ¢, ¢, defined on an interval [ are said to
be linearly dependent on I, if there exist two constants ¢, ¢z, not both zero, such that

c191(r) + cap(x) =0, Vo€l
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Linearly independent : The functions ¢, ¢, are said to be linearly independent on I,
if they are not linearly dependent there. That is, if the only constants ¢, ¢, such that
c101(x) + capa(x) = 0, V x € I are the constants ¢; = 0, ¢ = 0.

10. Let ¢; , ¢, be two solutions of L(y) = ¢ + a1y + asy = 0. The determinant

W (r, 62) = zi jz

= P10 — P

is called the Wronskian of ¢1,¢,. It is a function, and its value at = is denoted by

W (1, d2)(x).
11. (a) 12. (b)

Suggested Readings

1. Williams E. Boyce and Richard C. DiPrima, Elementary Differential Equations
and Boundary Value Problems, John Wiley and sons, New York, 1967.

2. W. T. Reid, Ordinary Differential Equations, John Wiley and Sons, New York,
1971.

3. Ross, S. L. Differential Equations, 3rd ed. New York: John Wiley and Sons, 1984.
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Unit 2

Linear Equations with Constant Coeffi-
cients (Continued)

OBJECTIVE:

After going through this unit, you will be able to understand the homogeneous and
non-homogeneous equations of order n. Also, we prove the existence and unique-
ness results of initial value problems for n'* order equations. Further, we discuss the
annihilator method for solving the non-homogeneous equation.

2.1 The homogeneous equation of order n

The work we have completed for the second order equation can be applied to the
equation of order n as well. Now, let L(y) be defined as

L(y) — y(”) + aly(n_l) + azy(n_Q) I any,

where ay, as, - , a, are constants. We attempt to solve L(y) = 0 using the exponential
e". We get

L(e™) = p(r)e’™, 2.1
where

p(r) =r"+ar™ a4 4 ay,.

We refer to p as the characteristic polynomial of L. If r; is a root of p, then L(e"*) = 0,
implying a solution e"'*. Suppose r is a root of multiplicity m; of p. Then

p(r1) = 0,p/(r) = 0,--- ,p™ V() = 0. (2.2)
If we differentiate the equation [2.1] k¥ times with respect to r, we get

ak - ak
%L(e ) = L(%e

= |p®(r) + kp* D () +

r:r) — L(xkemr)

k(k—1
(k=1) -2

5 (r)a® + ...+ p(r)z®| e
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For k = 0,1,--- ,m; — 1, we observe that z*¢"* is a solution of L(y) = 0. If k=1 and
r =1y, then L(ze™*) = p/(z1)e"* 4+ zp(r1)e™* = 0.
Therefore xze"™ is a solution of L(y) =0.If k =2 and r = ry,

L(z%e"*) = p/(r1)e™ + 2ap(r1)e™" + 2°p(ry)e™”

= 0.
Therefore z%¢"* is a solution of L(y) = 0.

Similarly L{z*e¢"*] = 0 fork = 0,1,2,--- (m;—1). Therefore "%, ze"®, ... gmi~lene
are solutions of L(y) = 0. Repeating this for each root ry, 73, - -+ ,r, with multiplicity
Mg, M3, - , Mg We get

GTQI, [L’Gmx, J]2€T2x, .. ’xmgflergx;
eTgm’ x€r3x7 x2€r3x7 .. 7xm3—1€7‘3a:;
S S 2 S S—l S
eTz’xera,"’xerm’_“’xm ers?T.

Hence the following result.

Theorem 2.1 Let ry,rs,--- ,r, be the distinct roots of the characteristic polynomial p,
and suppose r; has multiplicity m; (thus m; + mq + ...+ mg = n). Then the n functions

,acem”, . melflerlx;

’IeT,Qx’ e ’l'mQ_leTQx; cee
,ZEGTSx, . 7xms—lemm;
are solutions of L(y) = 0.

Definition 2.1 The n functions ¢y, - - , ¢, on an interval I are said to be linearly depen-
dent on [ if there are constants ¢y, co, - - - , ¢, not all zero, such that

Clqbl(li) + o+ Cnén(a") = 07

for all x in I. The functions ¢, ¢o, - - , ¢, are said to be linearly independent on I if they
are not linearly dependent on 1.

Theorem 2.2 The n solutions of L(y) = 0 given in Theorem 2.1 are linearly independent
on any interval I.

Proof:
Suppose we have n constants ¢;; (fori =1,...,sand j =0,...,m; — 1) such that
s m;—1
Z Z cijrle" ™ =0 (2.3)
i=1 j=0

on /. Summing over j for fixed i, we let

m;—1

J=0
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be the polynomial coefficient of e in[2.3] Thus we have
P (x)e"® + Py(x)e™* 4 - - - 4+ Py(x)e™* =0 2.5)

on /.
Claim: All the ¢;; are zero

Assume that not all the constants c;; are zero. Then there will be at least one of the
polynomials P, which is not identically zero on /. Assume that p,(z) is not identically
zeroon /.
Multiplying equation by e ", we get

Pi(z) + Py(x)e™™ ™% 4. 4 Py(x)e )T = (2.6)

Upon differentiating sufficiently many times (at most m; times), we can reduce
Py (x) = 0. In this process the degree of the polynomials multiplying e("s~")* remain
unchanged, as well as the non-identically vanishing character of any of these polyno-
mials. We obtain an expression of the form

Ql([ﬁ)e(rz—n)x IR Qs(x)e(rs—m)x _ 0,
or
Qi(z)e™ + -+ 4 Qy(x)e™ =0

on I, where the (); are polynomials, deg ); = deg P;, and (), does not vanish identi-
cally. Continuing this process, we finally arrive at a situation where

Ry(x)e™* =0 2.7)

on I, and R, is a polynomial, deg R, = deg P, which does not vanish identically on I.
But [2.7] implies that R,(z) = 0 for all = on I. This contradiction forces us to abandon
the supposition that P; is not identically zero. Thus P;(z) = 0 for all = in /, and
we have shown that all the constants ¢;; = 0, proving that the n solutions given in
Theorem 2.1 are linearly independent on any interval /.

If ¢1,..., ¢, are any m solutions of L(y) = 0 on an interval /, and ¢, ..., ¢, are
any m constants, then

p=c1Q1+ -+ b,

is also a solution since

L(¢) = c1L(¢1) + - + L) = 0

As in the case n = 2 every solution of L(y) = 0 is a linear combination of n linearly
independent solutions. The proof of this fact depends on the uniqueness of solutions
to initial value problems.

Example 2.1 Find the solutions of the equation

y" — 3y + 2y = 0.
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Solution:

The characteristic polynomial is p(r) = r*> — 3r + 2. The roots of the characteris-
tic polynomial are 1,1, —2. Thus, three linearly independent solutions are given by
e”, ze®, and e 2. Any solution ¢(z) of the given differential equation has the
form ¢(z) = (c; + cax)e® + e3¢, where ¢y, ¢, and c3 are any constants.

Let us sum up
1. We have characterized the homogeneous equation of order n.

2. We have defined the linearly dependent and linearly independent homogeneous
equations of order n.

3. We have rectified the properties of the homogeneous equation of order n.
4. Finally, we figured out some illustrative examples.
Check your progress

1. The differential equation whose linearly independent solutions are cos 2z, sin 2x

and e 7 is,
(a) y/// + y// + 4y/ — 0 (b) y/// + y// + 4y/ _|_ 4 — 0
(C) y/// _ yl/ + 4y/ _ — O (d) y/// _ yll _ 4y/ + 4 — 0
2. The general solution for the equation, "' — 6y” + 11y — 6 = 0 is
(@) ¢ = cre™® + coe® + c3e™” (b) ¢ = c1€® + coe 2 + c5e 3"
(©) ¢ = c1e% + ce*® + c3e™” (d) ¢ =cre™® + cpe™ + c3e™°

2.2 Initial value problems for n-th order equations

An initial value problem for L(y) = 0 is a problem of finding a solution ¢ which has
prescribed values for it, and its first n — 1 derivatives, at some point x, (the initial
point). If oy, ..., a, are given constants, and z, is some real number, the problem of
finding a solution ¢ of L(y) = 0 satisfying

d(zo) = a1, ¢ (20) = ag, -+, 0"V (z0) =

is denoted by

L(y) =0, y(xo)=a1, ¢(x0) =0, - ,y" (2) = .

There is only one solution to such an initial value problem, and the demonstration
of this will depend on an estimate for the rate of growth of a solution ¢ of L(y) = 0,
together with its derivatives ¢/, - - - , ("), We define

1/2

lo@)ll = (Io@@)* + -+ "D (@)?)

the positive square root being understood.
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Theorem 2.3 Let ¢ be any solution of
L(y) =y +ay™ V4 +a,y =0
on an interval I containing a point x. Then for all x € I

lo(zo)lle™ =1 < [lg(a)[| < [lp(wo) e, (2.8)

where
k=14l + -+ [an.

Proof:
Let u(z) = ||¢(z)||?, implies

u(z) = |p(@)? + 16/ (@) + - + [o" V()"
Then,

U= 8 + @G+ + ¢ VGM 4 g pn-1)
] = |p¢' + 'O+ ¢ + ¢"d + -+ ¢" " + "™
<o | + [¢'d| + 160" | + 16" | + - + [¢" 16" + [¢"0" ]
<|oll¢'| + [&'lo] + 1oll¢"| + 1¢"1¢'] + - - + |¢" 9" + |¢"[|o" |
<ol + ¢l + 161" + 16" [|¢'] + - - + [¢" T [8"] + |¢"[|" |
< 2|9[|¢'| + 2|¢'||¢"] + - - - + 2[¢" ][9] (2.9)

Since ¢ is a solution of L(y) = 0, we haveL(¢) = 0, that is,

¢(”) + algb(n_l) + oo+ alnqb =0
o _[a1¢(n—1) + a2¢(”—2) + ot an ). (2.10)

Using in[2.9 we get

/| < 2|¢]|¢'] + 21| + |¢"] + -+ + 2" M| — [a16" Y + a6 + -+ 4 @ + and]]
< 2[p(@)||¢ ()] + 2|¢ (2)||¢" ()] + - - - + 20" () [|o" " ()| + 2|¢" " (@) [|an| [~ ()]
+ o+ Jan||o(2)]]
< 2|p(2)||¢' ()| + 2|0 (@)]|¢" ()| + - - - + 2" ()] |¢" ()] + 2]ar[]¢" " ()]
+ ot 2anl[¢" ) ()] |o(2)]

We now apply the elementary inequality 2|b||c| < |b]? + |c|* to obtain

'] <o + 101 + 10 + 1012 + -+ "2 + 10" + [aa] [|¢" 2 + 10" 7] + - + |an]
< (14 lan)lof + 2 + lanall¢']?) + - 4+ (2 4 az])|¢"* + [0" 1
< (2 + 2]ay| + 2]as| + -+ + 2an_1| + 2]an])|] + (24 2|ar| + 2|ag| + - - - + 2|an_1|
+2an| P + -+ (24 2]ar] + 2az| + - - + 2]an_1| + 2|an]) ||
< 2+ 2ar] + 2as] + -+ 2ana| + 2an)[|S + ¢ + ¢ + - + 607 + 67V
<2(L+ Jar| + |ag| + -+ - + |ap—1] + an|)u,
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where
w= (o] + ¢+ 18"+ + 8" D) + |o" V.

Thus
|u'(z)| < 2ku(z),

where k = (1 + |a1| + |ag| + - - + |an—1] + |a,|). Hence
—2ku(z) < u'(x) < 2ku(x). (2.11)
Let > x,. Consider the right inequality of 2.11] we have

u(o)
u(z) .
u(x) < e@=T0)y (z4).

Substituting u(z) = ||¢(z)||*> and taking square root on both sides, we get

o)l < llg(wo)lle*==). (2.12)
Consider the left inequality of we have




u(x) > e @=20)y (1)

lo@)]l = llo () e . (2.13)
From[2.72]and 2.13]
Jota)lle =) < o)) < llo(wo) e,
Similarly for z < z( by integrating from x to x,
(o)l < [[6(e)]| < floeo) e =

from the above two inequalities we can obtain

lézo)le™He—l < ()] < o(a)lleHt—!
Hence proved the theorem.

Theorem 2.4 (Uniqueness Theorem) Let «y,--- ,«, be any n constants, and let x, be
any real number. On any interval I containing x,, there exists at most one solution ¢ of
L(y) = 0 satisfying

d(w9) = o1, ¢ (20) =z, -+, " (x0) = .

Proof:

We want to prove that there is a unique solution for the initial value problem L(y) =
0. Suppose ¢ and ¢ were two solutions of the initial value problem L(y) = 0 on [
satisfying the above conditions at x,. Let

X=¢—1. (2.14)
Then L(x) = L(¢) — L(¢) = 0 and

X(ro) = (¢ — ¥)(20)
=a;—a; =0

X' (z0) = (¢ — ) (20)
= ¢'(v0) — ¥’ (20)

:OéQ—OéQZO

X" (xo) = ¢V (wo) — "V (x0)

=aq, —a, =0.
We know that if ¢ is a solution of L(y) = 0, then

(o) lle==0! < l3(a) | < llg(eo) eHe—!,

where k = 1+ |ay| + - - + |a,|. Now, applying this inequality for y we get ||x(z)|| =0
for all x € I. This implies y(x) =0 for all z € I, or ¢ = .
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Definition 2.2 The Wronskian W (¢1,- -+, ¢,) of n functions ¢1,--- , ¢, having n — 1
derivatives on an interval I is defined to be the determinant function

(bl e ¢n
W(gblvagbn): 1 )
¢gn—1) . §Z57(1n_1)

its value at any x in I being W (¢1, ..., ¢n)(x).

Theorem 2.5 If ¢y, ..., ¢, are n solutions of L(y) = 0 on an interval I, they are linearly
independent if and only if

W(p1,...,00)(x) #0, forallxel.

Proof:
Assume that W (¢y,...,¢,)(x) #0, forallz € I
To prove: ¢, ¢, - - , ¢, are linearly independent.
Let ¢y, ¢s,- -+ , ¢, be constants such that
Cl¢1(x) +02¢2(x) ++Cn¢n($) :O, (215)
Vo e 1.
164 (1) + a0y () + -+ + cadly () = 0 (2.16)
gy’ (@) + sy V(@) + -t et V(@) = 0, (2.17)
Ve el
For fixed z in I, the above n linear homogeneous equations satisfied by ¢, co, - -+, ¢,.
The determinant is W (¢, - - - , ¢,)(z) # 0. Hence there is only one solution to this sys-
tem namely ¢; = ¢ = - - - = ¢, = 0. Therefore ¢y, ¢o, - - - , ¢, are linearly independent.
Conversely assume that ¢, ¢o, - - - , ¢, are linearly independent solution of L(y) =
0.

To prove: W(¢q,...,¢,)(x) #0
Assume that there is an z, in I such that W (¢, ..., ¢,)(z¢) = 0. This implies that
the system of liner equations

c191(x0) + caga(w0) 4+ 4 cu@n(w0) =0 (2.18)

Clgbll (ZEQ) + ngbé(‘%‘g) —+ -+ CngZS;L(ZL'()) =0 (219)

16"V (w0) + 208"V (wo) 4+ calV (w0) = 0 (2.20)

has a solution ¢y, ¢y, - - - , ¢, where not all constants are zero. Let ¢, ¢s, - - - , ¢, be such

a solution and consider the function ¢ = ¢;¢; + ¢1¢1 + - -+ + ¢,¢0,. Then
L(y) = L(ciy + c1¢1 + -+ - + Cuthn)
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= c1L(¢1) + caL(¢) + - - + cuLl(¢n)
=0 - L(¢)=--L(gy) = 0.

Put x = x(. Then

Y(xo) = c101(x0) + cad2(w0) + - - + (o)

0
V' (w0) = 1) (wo) + cady(wo) + - + cny, (20) = 0.

Similarly
V' (20) = 0---" () = 0.

Thus ¢ (z,) = 0. This is contradiction to our assumption that ¢,..., ¢, are linearly
independent. Hence W (o1, -+, ¢,)(z) # 0, Vx € I.

Theorem 2.6 (Existence theorem) Let o, ..., «, be any n constants, and let x, be any
real number. There exists a solution ¢ of L(y) = 0 on —oo < x < oo satisfying

¢(x0) = a1, ¢ (x0) = az, -+, " (o) = aun. (2.21)
Proof:
Let ¢1,. .., ¢, be any set of n linearly independent solutions of L(y) = 0 on —oo0 < = <
oo. It will be shown that there exist unique constants ¢y, - - - , ¢, such that

p=cip1+ -+ cndp

is a solution of L(y) = 0 satisfying Such constants would have to satisfy

Cl¢1(x0)+ et Cn¢n(x0) = aq,
a1y (zo)+ -+ + cudly (20) = o,

Clgbgn_l)(xo)—'_ R Cn¢$zn_1)($0) = Qp,

which is a system of n linear equations for ¢y, - ,c,. The determinant of the coeffi-
cients is just W (¢, - - - , ¢)(zo) which is not zero, by Theorem 2.5.

Therefore, there is a unique set of constants ¢y, - - - , ¢, satisfying the above equations.
For this choice of ¢, ..., ¢,, the function

¢=c191+ -+ oy

will be the desired solution.

Theorem 2.7 Let ¢4, ..., ¢, be n linearly independent solutions of L(y) = 0 on an inter-
val I. If ¢4, . . ., ¢, are any constants,
(b = Cl¢1 +...+ Cn¢n (2.22)

is a solution, and every solution may be represented in this form.
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Proof:
We have already seen that

L(6) = 1 L($1) + ... + caL(dhn) = 0.

Now, let ¢ be any solution of L(y) = 0, and let xy be in /. Suppose

gb(l'()) = O, ¢/(x0) = g, - agb(n_l)(wO) = Op.

In the proof of Theorem 2.6, we showed that there exist unique constants c,--- , ¢,
such that ¢ = ¢;¢1 + - - - + ¢, ¢, is a solution of L(y) = 0 on [ satisfying

U(xo) = a1, (20) = ag, - -+, "D (wg) = .

The uniqueness theorem (Theorem 2.4) implies that ¢ = 1, proving that every solution
¢ can be represented as in[2.22]
A simple formula exists for the Wronskian, as in the case n = 2.

Theorem 2.8 Let ¢4, ..., ¢, be n solutions of L(y) = 0 on an interval I containing a
point xy. Then

Wy, dn)(x) = e @2 (hy . ) (20). (2.23)
Proof:
Let ¢1, ¢, - -+ , ¢, be n solutions of L(y) = 0. Then,
¢/1 . ¢7
Weon o =| o0

¢gn—1) . ¢(n—1)

Now W' is sum of n determinants, that is, W’ = v; + vy + --- + v,,, Where v;, differs
from W only in its k-th row. v, is obtained by differentiating k-th row of .

WI(X)=v1+vg+ -+,

N T 4 o1 P2t pn 1 P2 P
N N S o1 Py ey
=\ . ) ) A i i R e o .-
erh e e I P ont or o5 o
The 15t n—1 determinant vy, vs, - - - , v,,_; are all zero because they each have 2 identical

rows. Therefore

©1 P2 Pn
©F ¥y o ¢
W' z)y=|"" "% "
YT @y o op
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and

L(y) =y™ + ayy™ 4 -
L(¢1) gn) = quf)ln 2
L(¢o) = (n =—a g{) n=l) _

Thus
_al(bgnfl) e — an¢n a/2¢é —
P1 Y2 o ¥n Y1 V2
01 P O 01 P
= —a1 . . — Q9 .
CHaRT ont or? op?
This implies
W' = —CL1W
W/
— _a,

/—dﬂv——/aldx

logW = —aqz + k,
W — e—all‘—l-k

— e—amcek‘

= ce”™", (where ¢ = ¢)

W1, ¢a, -+, dn) () = ce” ™™
Put x = z( in the above equation. Then
W1, 2, $n)(20) _
o = W (1, ba, -
Hence
W (b1, 02, , ¢u) (@) = W (1, 2, -
W (br, o+, ) () = e~ (@=20)

Hence the proof.
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» ¢n)(20).

¥1
o

¥1

“n
n

©2
2

©2

.. _an(bn

“n

Pn



Corollary 2.1 Let ¢4, ..., ¢, be n solutions of L(y) = 0 on an interval I containing x.
Then they are linearly independent on I if and only if W (¢1, ..., ¢n)(xo) # 0.

Let us sum up

1. We have discussed the existence and uniqueness theorem of the initial value
problem for n'* order equations.

2. We have proved the n solutions of L(y) = 0, then the linear combination of those
n solutions is also a solution of L(y) = 0.

3. Finally, we solved some illustrative examples.
Check your progress
3. Define Wronskian of n functions ¢, ¢s - - - ¢,,.

4. For the second order differential equations, ||¢(z)|| can be defined as
@ [o(@)]” + [ (2)]* (b) [¢/(2)]* + [ ()
© [lo(@)]* + 1 (2)]*]2 () [|¢' ()] + [¢" ()]

5. State the existence theorem for solutions of a nth order initial value problem,
with constant coefficients.

N

6. State the uniqueness theorem for solutions of a nth order initial value problem,
with constant coefficients.

2.3 The non - homogeneous equation of order n

Theorem 2.9 Let b be continuous on an interval I, and let ¢, ..., ¢, be n-linearly in-
dependent solutions of L(y) = 0 on I. Every solution ¢ of L(y) = b(x) can be written
as

¢:¢p+cl¢1+"'+cn¢n7

where 1), is a particular solution of L(y) = b(x), and ¢y, ..., ¢, are constants. Every such
¢ 1s a solution of L(y) = b(x). A particular solution 1, is given by
Z n(x / LB (2.24)
W¢17¢2a 7¢n)( )
Proof:

Let b be a continuous function on an interval /, and consider the equation :
L(y) — y(") + aly(nfl) 4+ agy(”*Q) +tagy = b(ﬁ)’ (2.25)

where ay,as, - - - , a, are constants. If ¢, is a particular solution of L(y) = b(z), and ¢
is any other solution, then

LY = tbp) = L(¢) = L(1hp) = b(x) — b(z) = 0.
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Thus ¢ — ¢, is a solution of the homogeneous equation L(y) = 0, and this implies that

any solution ¢ of L(y) = b(z) can be written in the form

=1y + 101 + oo + -+ Crp,

where ), is a particular solution of L(y) = b(z), the functions ¢, ¢o, - - - , ¢,, are linearly

independent solutions of L(y) =0, and ¢y, - - - , ¢, are constants.

To find a particular solution 1,, we proceed just as in the case n = 2, that is, we

use the variation of constants method. We try to find n functions u, u,,

Yy = U1 + UaPo + - -+ UL Dy,

is a solution. Then

Uy d1 + -+ Uy = 0,
Y, = wm@h + - undy,
wy Gy + g, =0,
Uy =u ) + -+ un ).

e ;.
Thus, if u, - - - u, satisfy

U1+ F g, =0,
Uy + - g, =0,

w0 4+ gl o,

n

wdy" oY = b(a),

we see that
wp - u1¢1 + .- +un¢n7
U, = urdy 4 -+ und),,
wl()n—l) _ u1¢§n—1) R unngz—l)7
W = w4 un b + b(x).
Hence

L(typ) = wiL(¢1) + - + upL(¢n) + b(z) = b(z),
= b(x).

and indeed ¢, = uy(¢1) + - - - + u,(¢y) is a solution of L(y) = b(z)
Now the determinant of the coefficient

®1 Y2 s Pn
R
et pht on !
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since ¢1, . . .
satisfying By cramer rule

0 w2 - @
0 ¢y - 9021
L ot
! W(¢177¢n)
In general
1 w2 k-1 0 Qrr1 0 @n
A U
o N B A S
‘ OIS
Wi (2)b
U;g(l’): k<x) (x) ) k:172a y 1,
W(¢1a7¢n)(x)

where W}, is the determinant obtaind from W (¢, ...
by 0,0,---,0, 1. Let o be any point in /. Then

/W¢1, ,l><>dt’

k=1,2,-,n

The particular solution is,

£)b(t)
Z¢k / W ¢1’¢2’ ,qbn)(t)dt'

Example 2.2 Find the solution of

, ¢, are linearly independent. Therefore there are unique functions v, - - -

, ®n) by replacing the k-th column

vy Yy =1, (2.28)

which satisfies

¥(0) =0, ¥'(0) =1, "(0) =0 (2.29)
Solution:
The homogeneous equation of is
v +y" +y +y=0, (2.30)

and the characteristic polynomial corresponding to it is
p(r)y=r*+r*+r+1.

The roots of p are i,
initial conditions we take for independent solutions of

¢1(x) = cosz, ¢o(x) =sinz, ¢3(x) =e ",
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To obtain a particular solution of of the form u,¢; + usy + uzp3 we must solve
the following eqations for v}, u), u}:

Uiy + U + uhz =0
Uy + uydy + usehy =0

! /! ! /! ! 1/
Uy + UsPy + uzdy =1,
which in this case reduce to

(cos z)u) + (sinx)uly + e “upy =0
(—sinx)u] + (cos z)uy — e “uy =0 (2.31)

(—cosx)u] — (sinz)uhy + e “uy =1.
The determinant of the coefficient is

Ccos T sinx et

W (d1, ¢a, ¢3)(x) = | —sinz  cosz —e 7|,
—cosx —sinz e ”*

Using 2.23 we have
W (1, ¢a, ¢3)(x) = e "W (1, d2, ¢3)(0),

since a; = 1 in this case. Now

W(¢1,¢2, ¢3>(0) =

—_ O

o = O

—
I
\,l\D

and thus

W (p1, P2, p3)(x) = 2"
Solving for u; we find that

0 sinx e "

1 1
uy(x) = 56”” 0 cosx —e ¥ = —§(cosx +sinz). (2.32)
1 —sinz e*
Similarly we obtain
1
uhy(z) = §(COSI —sinz), (2.33)
1
ug(x) = 5696. (2.34)

Integrating [2.3212.34] we obtain as choice for u, us, us:
1 .
u; = =(cosz — sinx),

1 .
Uy = 5(31113: + cosx),
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1
ug = —e”.

2
Therefore a particular solution of is given by

[(cosx — sinz) cosx + (sinx + cos ) sinx + 1]

uy(2)d1(7) + uz(x)P2(z) + us(w)ps(x) =

= N

The general solution of is of the form

1/)@) =14 ccosx+cosinx + cze”*,

where ¢y, ¢y, c3 are constants. We must choose these constants so that the conditions
[2.29) are valid. This leads to the g equations for ¢y, ca, c3:

Cl—l—ng—l, 62—03:1, 61—03:0,

which have the unique solution

1
€1 = T C2 =
Therefore the solution of the given problem is ¢(z) = 1+ 3(sinz — cosz — ™).
Let us sum up

1. We have characterized and find the particular solution of non-homogeneous
equation of order n.

2. Finally, we figured out some illustrative examples.
Check your progress

7. Define nonhomogeneous equations for nth order linear equations with constant
coefficients.

2.4 A special method for solving the non-homogeneous
equation

Although the variation of constants method yields a solution of the non-homogeneous
equation, it sometimes requires more labor than necessary. We now give a method,
which is often faster, of solving the non-homogeneous equation L(y) = b(z) when b is
a solution of some homogeneous equation M (y) = 0 with constant coefficients. Thus
b(x) must be a sum of terms of the type P(x)e*, where P is a polynomial and a is
a constant. Suppose L and M have constant coefficients, and have orders n and m
respectively. If ¢ is a solution of L(y) = b(x) and M (b) = 0, then clearly

M(L(¥)) = M(3) = 0.

This shows that ¢ is a solution of a homogeneous equation M (L(y)) = 0 with constant
coefficients of order m + n. Thus ¢ can be written as a linear combination with con-
stant coefficients of m + n linearly independent solutions of M (L(y)) = 0. Not every
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linear combination will be a solution of L(y) = b(z), however. Thus, to find out what
conditions must be satisfied by the constants, we substitute back into L(y) = b(z). This
always leads to a determination of a set of coefficients.

We call this method the annihilator method, since to solve L(y) = b(x), we find
an M which annihilates b, i.e., M(b) = 0. Once M has been found, the problem be-
comes algebraic in nature, with no integrations being necessary. Actually, as we have
seen from the example, all we require is the characteristic polynomial ¢ of M. The
following is a table of some functions together with characteristic polynomials of their
annihilators. In this table, a is a constant, and k& is a non-negative integer.

Functions Characteristic Polynomial of an Annihilator
e®® r—a
xkzeax (T‘ _ a)k'H
sin ax, cosax (a real) r? + a’
2 sin az, 2% cos ax (a real) (r? + a?)FH

Example 2.3 Find the particular solution of the differential equation
L(y) =9" — 3y + 2y = 2°.

Solution:
Since z? is a solution of M (y) = y"” = 0, every solution ) of L(y) = x* is a solution of
M(L(y)) = y® = 3y™ 4 2y® = 0.

The characteristic polynomial of this equation is r3(r? — 3r + 2), the product of the
characteristic polynomials for L and M. The roots are 0,0, 0, 1,2, hence ¢) have the
form:

V(1) = co + 1@ + car? + c3e” + cue®.

We seek a particular solution ¢, of L(y) = z?, we can assume 1), has the form
Yo(2) = o + 12 + o2’
To determine cy, ¢, ¢ such that L(i,) = 2%, We yield:

77Z);/)($) = c1 + 2¢aw,

Yy (x) = 2,

and
L(,) = (2¢2 — 3¢y + 2¢9) + (—6c3 + 2¢1)x + 2c92° = 2°.

Thus

200 =1,0r ¢ =1/2, and — 6¢3 +2¢; =0, or o = 1/2, and ¢; = 3/2,
and 2C2 — 3C1 —+ 2C0 = O, or ¢y = 7/4

Therefore, a particular solution is:

() = ;1(7 62 + 222)

is a particular solution of L(y) = 2.
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Let us consider another example of the annihilator method. Consider the equation
L(y) = Ael™?, (2.35)

where L has characteristic polynomial p, and A, a are constants. We assume that a is
not a root of p. The operator M given by M (y) = y'—ay, with characteristic polynomial
r — a, annihilates Ae(®®), The characteristic polynomial of ML is (r — a)p(r), and a is
a simple root (multiplicity 1) of this. Thus any solution ¢ of has the form

Y = Bel® 1 ¢,
where L(¢) = 0, and B is a constant. Placing back into we obtain
L(y) = BL(!") + L(¢) = Bp(a)e™”) = Ael®).

Since p(a) # 0 we see that B = A/p(a). Therefore we have shown that, if « is not a
root of the characteristic polynomial of L, there is a solution ¢ of of the form

A
V() = —e@),

2.4.1 Algebra of constant coefficient operators

In order to justify the annihilator method, we study the algebra of constant coefficient
operators a little more carefully. For the type of equation we have in mind:

agy™ + a1y + -+ apy = b(x),

where ay # 0, a4, ..., a, are constants, and b is a sum of products of polynomials and
exponentials, every solution ¢ has all derivatives on —oo < x < oco. This follows from
the fact that ¢) has n derivatives there, and

b_ @

¢(N) - _

pn=D gy
Qo Qo Qo 7

where b has all derivatives on —oo < = < oo. All the operators we now define will
be assumed to be defined on the set of all functions on —oco < = < oo which have all
derivatives there. Let L and M denote the operators given by:

L(¢) = a0¢(n) + a1¢(n—1) + 4 a0,

M(9) = boo™ + bV + -+ binoh,

where ag, aq,...,a,,by,b1,...,b, are constants, with ay # 0, by # 0. It will be conve-
nient in what follows to consider ag, by which are not necessarily 1. The characteristic
polynomials of L and M are thus:

p(r) = agr™ + ayr™ ™+ -+ ap,

q(r) = bor™ + byr™ 4 4 by,
respectively. We define the sum L + M to be the operator given by:

(L+ M)(¢) = L(¢) + M(0),
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and the product M L to be the operator given by:
(ML)(¢) = M(L(¢))

If o is a constant, we define oL by:

(aL)(¢) = a(L(9)).

We note that L + M, ML, and «L are all linear differential operators with constant
coefficients.
Two operators L and M are said to be equal if

L(¢) = M(¢)

for all » which have an infinite number of derivatives on —oco < & < oco. Suppose L and
M have characteristic polynomials p and ¢, respectively. Since ¢"*, for any constant r,
has an infinite number of derivatives on —oo < x < oo, we see that if L = M then

and hence p(r) = ¢(r) for all . This implies that m = n and a, = b, for k =0,1,...,n.
Thus L = M if and only if L and M have the same order and the same coefficients, or,
equivalently, if and only if p = q.

If D is the differentiation operator

we define D? = DD and successively
D¥ = DD*1' (k=2,3,---).

For completeness, we define D° by D°(¢) = ¢, but do not usually write it explicitly. If
« is a constant, we understand by «a operating on a function ¢ just multiplication by
a. Thus

a(9) = (aD")(9) = ad.

Now, using our definitions, it is clear that
L=aD"+a;D" '+ .- +a,,

and
M =byD™ + b, D™ 4 - 4 by

Theorem 2.10 The correspondence which associates with each
L=ayD"+a,;D" ' +---+a,

its characteristic polynomial p given by
p(r) = agr™ +ayr™ - 4 ay,

is a one-to-one correspondence between all linear differential operators with constant
coefficients and all polynomials. If L and M are associated with p and q, respectively,
then L + M is associated with p + g, M L is associated with pq, and L is associated with
ap (Where « is a constant).
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Proof:
We have already seen that the correspondence is one-to-one, since . = M if and only
if p = ¢q. The remainder of the theorem can be shown directly, or by noting that

(L+ M)(e™) =L(e™) + M(e"™) = [p(r) + q(r)]e",
(ML)(e™) =M(L(e"™)) = M(p(r)e"™) = p(r)M(e"™) = p(r)q(r)e’™,
(aL)(e™) =a(L(e™)) = ap(r)e™

This result implies that the algebraic properties of the constant coefficient operators
are the same as those of the polynomials. For example, since LM and M L both have
the characteristic polynomial pq, we have LM = M L. If the roots of p are ry,...,7,,
then

p(r) =ag(r —ry) - (r —ry).

and since the operator
ao(D —ry)--- (D —1y)

has p as characteristic polynomial, we must have
L=ay(D—r1)---(D—rp),

since the operator L has p as its characteristic polynomial. This gives a factorization
of L into a product of constant coefficient operators of the first order.

Theorem 2.11 Consider the equation with constant coefficients
L(y) = P(z)el®®), (2.36)
where P is the polynomial given by
P(z) = boax™ + byz™ Y 4 b, (by # 0). (2.37)

Suppose a is a root of the characteristic polynomial p of L of multiplicity j. Then there is
a unique solution v of [2.36] of the form

Y(x) = 7 (coz™ + ;2™ ™Y + en)e™
where ¢y, ¢y, -+ , ¢, are constants determined by the annihilator method.

Proof:
The proof makes use of the formula
k(k—1)

2' p//(r)xk72+_”

L(xke”) _ |:p<r)xk+kp/(r)xk1 4
+hp* )z + p P (r) | e, (2.38)

k—1

which we already proved. The coefficient of p¥)(r)z*~! is the binomial coefficient and

it can be written as:
K\ k!
1) (k=D
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Thus we may write

L(@he™) = [Z (?)p(” (T)xkl]

where we understand 0! = 1. An annihilator of the right side of is
M = (D —a)™t,

with characteristic polynomial given by

a)™tt,

q(1) = (7 —

Since a is a root of p with multiplicity 7, it is a root of pq with multiplicity j + m + 1.
Thus, solutions of M L(y) = 0 are of the form

W(r) = (coxj+m + el Cj+m) e + ¢(x),

where L(¢) = 0, and ¢ involves exponentials of the form e** with s a root of p, s # a.
Since « is a root of p with multiplicity j, we have that

i—1 j—2 ax
(Cma1® 7" + g2 ™"+ - F ey j)e

is also a solution of L(y) = 0. Consequently, we see that there is a solution of
having the form

V() =27 (cox™ + e x™ 4+ o) €77, (2.39)

where ¢y, ¢4, . .., ¢, are constants.
We now show that these constants are uniquely determined by the requirement

that ¢ satisfy[2.36] Substituting[2.39into L, we obtain
L() = coL(z7T™e™) 4+ e  L(27 ™ 1e™) 4 -+ + ¢ L ). (2.40)
The terms in this sum can be computed using[2.38] We note that
p(a) — p’(a) —_ .= p(jfl)(a) =0, p(j)(a) £ 0.

Since « is a root of p with multiplicity j. We have k& > j:

—1
kj = p(a)z® + kp/(a)z*! + MkQ—')p"(a)xk_2 + .- +p(k)(a),
and
jngary _ [ (THMN Gy m o (TN G0y emel L Gm) (| pan
e = | (7Y@ + (T )@ )|
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Lele) = (1)1 (@e = e
Using these computations in[2.40, and noting|2.37} we see that satisfies if and
only if

m

o G T R Ch PO R

m—1 m—1

Co (j N m)p](a) = bo,

cop THa) + e TN a) 4 - F e’ (@) = by,

This is a set of m+1 linear equations for the constants ¢y, cy, - ,¢,. They have a
unique solution, which can be obtained by solving the equations in succession since
p’(a) # 0. Alternately, we see that the determinant of the coefficients is just

(j +m) (J‘ +m— 1) A ()] £ 0.

m m—1

This completes the proof.
Let us sum up

1. We have defined the special method for non-homogeneous equation of order n.
2. We have studied algebra of constant coefficient operators.

3. We have rectified the equation with the constant coefficient by the annihilator
method.

4. Finally, we rectified some illustrative examples.
Check your progress

8. The characteristic polynomial of an annihilator method of a function z*e® is
@r—a (b) (r — a)k*! (©) (r? + a?)k+t © r*+a?

9. Explain annihilator method.

Summary
This unit provides tools for solving linear differential equations of order n with con-
stant coefficients.

e The homogeneous equations of order ‘n’ are used for solving the initial value
problems for n'* order equations.

e Fundamentally for each n'* order differential equation the method used involves
a set of ‘n’ linearly independent functions, i.e., a fundamental set of solutions, in
order to obtain a general solution.
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e The non-homogeneous equations of order n can be solved by finding the partic-
ular integral.

e The particular solution to the non-homogeneous equation is evaluated using spe-
cific equations and the particular solution.

e The annihilator method is a technique for solving non-homogeneous linear dif-
ferential equations by applying a differential operator, called the annihilator,
that eliminates the non-homogeneous term. Once the equation becomes ho-
mogeneous, it is solved, and the particular solution is found using the original
non-homogeneous term.

Glossary

e [nitial Value Problem: It is a differential equation accompanied by an appropriate
number of initial conditions and the number of initial conditions essential will
depend on the order of the differential equation.

e Particular solution: A particular solution is a specific solution to a differential
equation that satisfies both the equation and any given initial or boundary con-
ditions. It represents one of possibly many solutions to non-homogeneous differ-
ential equations

e Annihilator method: The annihilator method is a technique for solving non-
homogeneous linear differential equations by applying an operator (annihilator)
that turns the non-homogeneous term into zero, allowing you to solve the result-
ing homogeneous equation.

Self-assessment questions

1. Let W be the Wronskian of two linearly independent solutions of ordinary dif-
ferential equation 2y” + 3’ + t?y = 0; t € R. Then for all t, there exist a constant
C € R such that W(¢) is
(@) Cet (b) Ce= (c) Ce? (d) Ce?

2. Find the false statement

(a) If ¢1, ¢ are linearly independent functions on an interval /, they are linearly
independent on any interval J contained inside /.

(b) If ¢y, ¢, are linearly dependent on an interval I, they are linearly dependent
on any interval J contained inside /.

(c) If ¢1, ¢, are linearly independent solutions of y” + ¢/ + coy = 0 on an
interval I, then they are linearly independent on any interval J contained
inside /.

(d) If ¢y, ¢ are linearly dependent solutions of y” + ¢, +coy = 0 on an interval
I, then they are linearly dependent on any interval J contained inside I.

3. If ¢, and ¢, are any two solutions of v + a1y’ + asy = b(x), where ay, as are
constants and b(x) is continuous function on 7, then which of the following is a
solution of the corresponding homogeneous equation?

@ ¢p1+¢2 (B) o1 —¢2 () Yy(x) +é1+ @2  (d) None of these
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. The differential equation whose linearly independent solutions are cos 2z, sin 2z
and e 7 is,

(a) y/// _|_ y// _I_ 4y/ — O (b) y/// _|_ y// _l_ 4y/ + 4 — 0

(C) y///_y//_|_4yl_4:() (d) y/l/_y//_4y/+4:O

. Let W be the Wronskian of two linearly independent solutions of ordinary dif-
ferential equation 2y” + 3’ + t?y = 0; t € R. Then for all t, there exist a constant
C € R such that W(t) is

(a) Ce! (b) Ce= (c) Ce? (d) Ce?
. If ¢ satisfies y/ + 2y = 2 + e~** with y(0) = 0, then lim equals

@o (b) 1 (c) 2 (d -1
. The Wronskian of the functions ¢;(x) = cosz, ¢2(x) = sinz,

¢3(x) =e " is

(@) 2e7* (b) 2 (03 (d) 2¢*

EXERCISES

. Are the following sets of functions defined —co < z < oo linearly independent
or dependent there? Why?

(@) ¢1(z) =1, ¢s(z) =z, $3(x) = 2°
(b) ¢1(x) = e, ¢o(x) = sinx, p3(z) = 2cosx
(@ d1(x) =z, da(x) = €*, p3(x) = .

. Prove that if py, po, p3, p4 are polynomials of degree two, they are linearly depen-
dent on —oco < x < 0.

. Are the following statements true or false? If the statement is true, prove it;
otherwise give a counterexample.

(a) "If ¢y, - - -, ¢, are linearly independent functions on an interval I, then any
subset of them forms a linearly independent set of functions on /."

(b) "If ¢1,- - -, ¢, are linearly dependent functions on an interval /, then any
subset of them forms a linearly dependent set of functions on /."

. Find all solutions of the following equations:

(@ y" -8y =0

(b) y¥ + 16y =0

(© y" —5y" +6yr =0

(d) y" —iy" +4yr — 4iy =0
(e) y1% + 100y =0

) y@ +5y" +4y =0

(&) y¥ —16y =0

h) y"—3yr—2y=0
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10.

1) y" — 3iy" — 3yr +iy = 0.

(a) Compute the Wronskian of four linearly independent solutions of the equa-
tion y® + 16y = 0.

(b) Compute that the solution ¢ of this equation which satisfies

¢(0) =1, ¢/(0) =0, ¢"(0) =0, ¢"(0) = 0.
Find four linearly independent solutions of the equation y®* + Ay = 0, in case:
(@ A=0,
(b) A>0,
(©) A <O.

Consider the equation
y" — dyr = 0.
(a) Compute three linearly independent solutions.
(b) Compute the Wronskian of the solutions found in (a).
(c) Find that solution ¢ satisfying

¢(0) =0, ¢(0)=1, ¢"(0)=0.
Consider the equation
y@ =y —y +y=0.

(a) Compute five linearly independent solutions.
(b) Compute the Wronskian of the solutions found in (a), using Theorem 2.8.
(c) Find that solution ¢ satisfying

6(0) =1, ¢/(0) = ¢"(0) = ¢"(0) = ¢Y(0) = 0.

Find all solutions of the following equations:

(a) y/// . y/ =7

(b) y/// _ 8y — e

(© y™ 416y = cosx

(d) y® —4y® +6y" — 4y +y=e®

(e yW —y =cosx

(D y// _ 21@/ —y = eiz _ 26—1':5.

Consider the equation L(y) = b(z), where b is continuous on an interval /. If
ag, - - -, (u, are any n constants, and x is a point in /, show that there is exactly
one solution ) of L(y) = b(z) on [ satisfying

¢($0) = O, ¢,<$0) = Qg, ", ¢(n_1)(x0) = Op.

(Hint: Let ¢ be the solution of L(y) = 0 satisfying the same initial conditions. Let
Y = ¢ + 1), where 1, is given by (2.24). Show that ¢ is unique.)
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11. Consider the equation
y(n) + aly(”_l) + ..o+ any = b(aj‘)7

where a4, - - -, a,, are real constants and b is a real-valued continuous function on
some interval /. Show that any solution which satisfies real initial conditions is
real-valued.

12. Using the annihilator method find a particular solution of each of the following
equations:
(@) y’ +4y =cosx
(b) v + 4y = sin 2z
(¢) v — 4y = 3e** + 4e*
(d " —y —2y=2a%*+cosx
(e) v+ 9y = x>
0 v" +y = xe®cos2x
() v+ iy + 2y = 2cosh(2z) + e~ (Note : coshu = %)
(h) " =2%+e *sinx
(1) y/// + 33/” + 33// + y = 51326_36.
13. Let L be a constant coefficient operator, and suppose v, is a solution of

L(y):bk’(x)7 k= 17"'7m7

where the b, are continuous functions on some interval /. Show that ¢) = ¢, +
g + - - - 4 1y, is a solution of

L(y) =b(x),b="0b1 + - + by,.

14. Suppose b = by + - - - + b,,, Where b, is annihilated by the constant coefficient
operator M. Show that b is annihilated by M = M M, - - - M,,.

15. (a) Show that if f, g are two functions with %k derivatives then

k

DH(r0) = () D

=0

(1) = w=m

(b) Show that if g has k derivatives, and r is a constant,

where

D¥(e"g) = €™ (D +1)*(g)
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16. Let L be a linear differential operator with constant coefficients with character-
istic polynomial p(r) = (r — a)¥, that is L = (D — a)*. Using the result of Ex. 1
(b) show that any solutiion ¢ of L(y) = 0 has the form
¢(z) = €*P(x)

where P is a polynomial such that deg P < k — 1. Also show that any such ¢ is a
solution of L(y) = 0.

Answers for check your progress

1. (b)) 2. ()
3. The Wronskian W (¢4, - - - , ¢,,) of n functions ¢4, - - - , ¢, having n — 1 derivatives
on an interval [ is defined to be the determinant function
b1 b
oo 9
W(¢17"'7¢n): : : )
¢§n71) o ¢£ln71)
its value at any « in I being W (¢4, ..., ¢,)(x).
4. (c)
5. Existence theorem: Let ay,...,q, be any n constants, and let z, be any real

number. There exists a solution ¢ of L(y) = 0 on —co < = < oo satisfying

¢($0) = aq, gb/('TO) = Qg, - 7¢(n—1) ($O) = Opy. (241)

6. Uniqueness Theorem: Let «y,---,«a, be any n constants, and let x, be any
real number. On any interval / containing x,, there exists at most one solution ¢ of
L<y) =0 SatiSinng ¢($0) = Qay, (b/(l'o) = Q, 7¢(n—1) (IO) = Qp.

7. Let b be a continuous function on an interval /, and consider the equation :

where a1, as, - - - ,a, are constants.

8. Annihilator method : a technique for solving non-homogeneous linear differen-
tial equations by applying a differential operator, called the annihilator, that eliminates
the non-homogeneous term. Once the equation becomes homogeneous, it is solved,
and the particular solution is found using the original non-homogeneous term.

Suggested Readings

1. E. A. Coddington and N. Levinson. Theory of Ordinary Differential. Equations.
New Delhi: Tata Mc Graw-Hill, 1972.

2. W. T. Reid, Ordinary Differential Equations, John Wiley and Sons, New York,
1971.

3. Boyce, W.E. and Richard C. DiPrima. Elementary Differential Equations and
Boundary Value Problems. New York: John Wiley and Sons, Inc., 1986.
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Unit 3

Linear Equations with Variable Coeffi-
cients

OBJECTIVE:

Upon completion of this unit, you will possess the ability to understand the system
of linear differential equations and define the method of solution of a known integral
and the reduction of the order of a homogeneous equations. Finally, we discuss the
significance of Legendre’s equations and functions.

3.1 Introduction

A linear differential equation of order n with variable coefficients has the following
form:

ao(2)y"™ + ay (x)y ™V + - + a,(2)y = b(a), (3.1)

where ag,ay,--- ,a,,b are complex-valued functions over a real interval /. Points
where ao(z) = 0 are known as singular points. Assume that ay(z) # 0 on I. Di-
viding the equation by ay yields the same equation, but with ay substituted by the
constant 1. Then we have

As in the situation when ay, ao, - - - , a,, are constants, we identify the left side of as
L(y). Thus
L(y) = y™ 4+ ay(x)y™ Y + ... + an(2)y, (3.3)

and the equation [3.3|becomes L(y) = b(z).

Definition 3.1 Ifb(x) = 0 forall z on I, then L(y) = 0 is called a homogeneous equation,
whereas if b(x) # 0 for some z in I, then L(y) = b(x) is called a non-homogeneous
equation.

We have that L itself is an operator which takes each function ¢, which has n deriva-
tives on I, into the function L(¢$) on I whose value at z is given by

L(#)(x) = ¢ (2) + ar ()¢ (@) + - - + an(2)d(2).
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Thus, a solution of 3.2/ on I is a function ¢ on [ with n derivatives and L(¢) = b.
In this unit, we assume that the complex-valued functions a4, as, - - - , a,, b are con-
tinuous on a real interval I, and L(y) denotes the expression[3.3

3.2 Initial value problems for the homogeneous equa-
tion
Although it is not always possible to formulate a solution of in terms of simple

functions, it can be shown that solutions exist.

Theorem 3.1 (Existence Theorem) Let ay,as,--- ,a, be continuous functions on an in-
terval I containing the point xz,. If aq, a9, -+, «, are any n constants, there exists a
solution ¢ of

L(y) = y™ 4 al(m)y("_l) +-Fap(z)y=0

on [ satisfying
¢(.T()) = g, ¢(1)(ZBO) = Qg, - 7¢(n_1)<x0) = Q.

Theorem 3.2 Let by, by, - - - , b, be non-negative constants such that for all x in I
’a](l')‘gb], (j:1727“'7n)7

and define k by
k=1+b+- -+ b,.

If zo is a point in I, and ¢ is a solution of L(y) = 0 on I, then
16 (o) lle™M==1 < ()| < |16 (o) ||eM*—™! (3.4
forall xin I.

Proof: Let
L(y) — y(n) _|_ al (l‘)y(n_l) + PP _I_ an(aj)y

Since ¢ is a solution of L(y) = 0, we have L(¢) = 0 and
O (@) + ax ()¢ (@) + -+ + an(a)o(x) = 0.
Therefore
0" ()] = | = ar(2)" D (z) =+ — an(2)d(2)]
0" (2)] < |ax (x)p" (ﬂf)l+ -+ |an(2)¢()]
[0 (2)] < |ar (@)][9" V()] + - + Jan(@)[|o(2)].

Since |a;(z)| < b;, we obtain

[ (2)] < bilg" D (@) + -+ bal(@)]. (3.5)

Let
u(z) = ||o(z)|[?
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u(z) = [¢(@) [ + ¢/ (@) + - + [V (@)

u(z) = ¢(2)p(x) + ¢ ()¢ () + -+ + ¢ D (2)p™-1 ()
U (x) = ¢ (2)p(x) + (2)¢ (x) + ¢ (2)¢' () + ¢/ (2)¢" () + - - + " () oD ()
+ "D (2)o (x)

[/ (2)] < |6 (2)6(2)] + |6(2)¢/ (2)] + 1" ()¢ (2)| + |¢'(2) " ()] +
+ 16" (@)¢ =D (@)] + ¢~V (2)00) ()|
[/ ()] < |6 (2)|[o(2)] + |o()l[¢'(2)] + 6" (2)[[¢/ (2)] + |¢' (x)[[¢" ()] +
+ 16" @)l ()] + [V (@) |6 (z)]
[/ (2)] < 2|6 ()[[¢' ()] + - - + 2(¢" 7V (@) [bal " (@)] + bal 6" (@) + -+ + bulB()]
< 2|6 ()¢’ ()] + 2|6/ ()[|¢" ()] + - -~ + 261"~ () |6V ()]
+ 26 "V (@)||0" P (@) + -+ 20,6V () |0 ()]

Using the result 2|b||c| < |b]? + |¢|?, we obtain

[/ ()] < [é(@)” + |6/ (2)]” + ¢/ () + 10" (@)]” + -+ + bal ™D (@) [* + bi|o" V()
+ 02|06V (@)? + b2|6™ D (@) [P + -+ a7V (@) + bl ()

(14 bo)|d(@)]* + (24 b )| (@) P+ -+ (1 +2by + by + - -+ by,)|0" H(2)|?
(2 + 2by 4 20y + - - - + 2b,)|d(2) > + (2 4 2by + 2by + - - - + 2b,)|¢ (2)]> +
+ (24 2by + 2by + - - - + 2b,) [V () |2

<
<

<21 +by+by+ - +by)[lo(@)° + ¢/ ()P + - + [¢" V() ]
[/ (2)] <2(1+by + by + -+ + bp)u(x)
/()] < 2ku(x)
—2ku(z) < u'(x) < 2ku(x).

Let x > x. Consider the right side of the above inequality,

U(.T) <62k(a:—xo)
u(xo) —
u(x) < e@=20)y (1)

[o()][? < e[ (ao) |2
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Taking square root on both sides,
lp(2)]] < "= |g ()] - (3.6)
Similarly, if we consider the left side of the inequality, then we obtain
lp(2)]] > e =0 |p(xo) |- (3.7)
From [3.6]and we have
e M1 g(o) || < [Jg()]] < 0o ).
Similarly, we can prove the inequality for = < z,. Finally, we get
16 (zo)lle 720l < [|@(x)]] < [[@(xo)[|e*l* 0.

Theorem 3.3 (Uniqueness Theorem) Let xy be in I, and let oy, s, -+, be any n
constants. There is at most one solution ¢ of L(y) = 0 on I satisfying

d(x0) = a1, ¢ (20) = g, -+, 3"V (30) = . (3.8)

Proof:
Let ¢ and ¢ be two solutions of L(y) = 0 on [ satisfying the condition at xo.

Y(x0) = o, ' (w0) = g, - - - 7¢(n71)(1’0) = Qp. (3.9)

Consider x = ¢ — 1.

To prove: x(z) =0 for all z on .

Even though the functions a; are continuous on / they need not be bounded there.
However let © # xy be any point on [ and let J be any closed bounded interval in /
which contains z, and x. On this interval the functions a; are bounded, that is,

|a’j($)‘ < bj? (] = 1a27"' 7”)7

on J for some constant b;, which may depend on J. Now we can apply above theorem
to x defined on J. We have L(x) = 0 on J, and

x(x) = ¢(x) — (x)
X(o) = d(z0) — ¥ (70)



This implies, ||x(zo)|| = 0.
By previous theorem,

Hence

o(z) = ¢(x), Yo € 1.

3.2.1 Solutions of the homogeneous equation

If ¢1, o, - , & are any m solutions of n-th order equation L(y) = 0 on an interval /,
and ¢y, ¢y, - - , ¢, are any m constants, then

L<Cl¢1 + 62¢2 + -+ Cm¢m) = ClL(¢1) + CQL(¢2> +oee CmL((bm)u

which implies that c¢;¢1 + o2 + -+ - + ¢¢,, is also a solution. That is, any linear
combination of solutions is again a solution. The trivial solution is the function which
is identically zero on /.

As in the case of an L with constant coefficients, every solution of L(y) = 0 is a
linear combination of any n linearly independent solutions.

Definition 3.2 The n functions ¢, ¢o,- - , ¢, defined on an interval I are said to be
linearly independent if the only constants ¢, co, - - - , ¢, such that

Clqbl(z) + 02¢2($) +---+ Cn¢n($) = O,
for all x in I are the constants ¢y =cy =---=¢, = 0.
Theorem 3.4 There exist n linearly independent solutions of L(y) = 0 on I.

Proof:
Let 2 be a point in /. According to Theorem 3.1 there is a solution ¢; of L(y) = 0
satisfying

d1(w0) = 1,64 (20) = 0, , ¢ (o) = 0.
In general for each i = 1,2,--- ,n there is a solution ¢, satisfying
O (mo) = 1,09 V(xo) =0, j # 1. (3.10)
The solutions ¢4, ¢o, - - - , ¢, are linearly independent on I, for suppose there are con-
stants ¢y, ca, - - - , ¢, such that
c101(x) + cada() + - - - + cnu(z) =0, (3.11)
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for all = in /. Differentiating we get

0
0

194 (x) + cady() + - - - + cndly ()
1 () + cady () + -+ - + oy (2)

(3.12)
o]V (@) + 0] (@) + o+ et () =0

for all z in I. In particular, the equations must hold at . Putting = =
in[3.11] we find, using[3.10[that ¢;1 + 0+ --- 4+ 0 = 0, or ¢; = 0. Putting z = z in the
equations |3.12|we obtain ¢y = ¢3 = --- = ¢, = 0, and thus the solutions ¢1, ¢, -+ , ¢,
are linearly independent.

Theorem 3.5 Let ¢y, ¢, - , ¢, be the n solutions of L(y) = 0 on I satisfying [3.10} If ¢
is any solution of L(y) = 0 on I, then there are n constants ¢y, ¢y, - - - , ¢, such that

¢ =c101+ "+ Ccy®p.

Proof:
Let

d(xo) = a1, @' (x9) = g, -+ ;925("_1)(%) = Qp,
and consider the function
Y =a1P1 + aar + -+ apdp.

It is solution of L(y) = 0, and clearly

V(o) = a191(x0) + Qaga(w0) + -+ + (o) = 1,

since

P1(x0) = 1, da(0) = 0, , pp(x0) = 0.

Using the other relation in 3.10[ we see that

77[)(3170) = O, @ZJ’(ZL‘()) = Qg, 7¢(n—1)(x0> = Op.

Thus ¢ is a solution of L(y) = 0 having the same initial conditions at x, as ¢. By
uniqueness theorem, we must have ¢ = 1, thatis, ¢; = ay, ¢ = g, -+ , ¢, = Q.

Definition 3.3 A set of functions which has the property that, if ¢, ¢» belong to the set,
and ¢, co are any two constants, then cy¢1 + co¢o belongs to the set also, is called a Linear
space of functions.

We have just seen that the set of all solutions of L(y) = 0 on an interval I is a linear
space of functions.

Definition 3.4 If a linear space of functions contains n functions ¢y, - , ¢, which are
linearly independent and such that every function in the space can be represented as a
linear combination of these, then ¢y, --- , ¢, is called a basis for the linear space, and the
dimension of the linear space is the integer n.
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The above theorem states that the functions ¢, - - , ¢, satisfying the initial con-
ditions form a basis for the solutions of L(y) = 0 on I, and this linear space of
functions has dimension n.

Let us sum up
1. We have defined linear differential equation of order n with variable coefficients.

2. We have discussed the existence and uniqueness theorem of the initial value
problem for linear differential equation of order n with variable coefficients.

3. We have proved the inequality for = < z,, we get
o)™l < [[(a) || < [jg(ao)] et

4. We have characterized the any linear combination of solutions is again a solution.
5. Finally, we defined the linear space and basis of the linear space.
Check your progress

1. State the existence theorem for solutions of a nth order initial value problem,
with variable coefficients.

2. State the uniqueness theorem for solutions of a nth order initial value problem,
with variable coefficients.

3.3 The Wronskian and linear independence

To demonstrate that any set of n linearly independent solutions of L(y) = 0 can serve

as a basis for the solutions of L(y) = 0, we consider the Wronskian W (¢y, ¢o, - - , dy).
Remember that this is defined as the determinant
¢1 G2 g
9 ¢ e 9,
W(¢17¢27"'7¢n): . . .
¢§n_1) gn—l) o grz—l)
Theorem 3.6 If ¢1,¢s,- - , ¢, are n solutions of L(y) = 0 on an interval I, then they

are linearly independent there if, and only if,

W (1,2, ,n) #0, Vx € 1.

Proof:
First suppose W (o1, ¢2, -+, ¢,)(x) # 0 for all z in I. If there are constants ¢y, o, -« - , ¢,
such that

c101(x) + capo(x) + -+ + cpp(x) =0 (3.13)
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for all z in I, then clearly

0
0

10 () + oy () + -+ - 4 capy, (1)
10 () 4 oy (@) + - - - 4 cu @y ()

(3.14)
clgbg"_l)(x) -+ @qbé"_l)(x) + o ™Y (z) =0

for all x in I. For a fixed x in I the equations are n linear homoge-
neous equations satisfied by ¢y, cs, -+ ,¢,. The determinant of the coefficients is just
W (1, ¢2,- -, dn)(x), which is not zero. Hence there is only one solution to this sys-
tem, namely ¢; =, =--- =¢, =0.
Therefore ¢y, ¢o, - - - , ¢, are linearly independent on /.

Conversely, suppose ¢4, ¢o, - - , ¢, are linearly independent on /. Suppose there is
an z, in I such that

W(¢1a ¢27 Tty ¢n)($0) = 0
Then this implies that the system if n linear equations

c191(0) + c2d2(o) + -+ + cudn(z0) =0
Cl(bll (Z‘o) + CQ(Z)IQ($0) + -+ qub;(l’o) =0

: (3.15)
e (o) + 268" (o) + -+ + caghl (o) =0

has a solution ¢y, cs,--- , ¢, where not all the constants ¢, ¢y, - ,c, are zero. Let
¢1, ¢, , C, be such a solution, and consider the function

Y =c1¢1 + 2 + -+ Can.
Now L(y) = 0, and from [3.15|we get

(o) = 0,9 (wg) = 0,- -+, " V(@) = 0.
From the uniqueness theorem it follows that ¢)(z) = 0 for all « € I, and thus
c191(x) + C202(2) + -+ - + cupn(x) = 0,

for all x in . But this contradicts the fact that ¢y, ¢s, - - - , ¢, are linearly independent

on . Thus the supposition that there was a point z, in I such that

W(¢17 ¢27 T 7¢n)(x0) =0

must be false. We have consequently proved that

W<¢17¢27 o ,an)(l') # O, Vo e 1.
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Theorem 3.7 Let ¢, ¢s,- - , ¢, be n linearly independent solutions of L(y) = 0 on an
interval L. If ¢ is any solution of L(y) = 0 on I, it can be represented in the form

O =c1Q1 + a2 + -+ Crdy

where ¢y, ¢y, - , ¢, are constants. Thus any set of n linearly independent solutions of
L(y) = 0 on I is a basis for the solutions of L(y) = 0 on I.

Proof:
Let z( be a point in I, and suppose

d(x0) = a1, ¢ (z0) = g, - -+, 3" (30) = .

We show that there exist unique constants ¢y, o, - - - , ¢, such that

Y =ciPr + o + -+ oy

is a solution of L(y) = 0 satisfying

77[)(3170) = O, @Z}/(ZL‘()) = Qg, " 7¢(n—1)(x0> = Op.

By the uniqueness theorem we then have ¢ = ¢, or

O =ci91 + a2 + -+ Crp.

The initial conditions for ¢ are equivalent to the following equations for ¢, g, - - , ¢,:

c1¢1(70) + caa(wo) + -+ + un(20) =11

19 (o) + c2gy(w0) + -+ - + n @), (w0) =0y
(3.16)

C1¢§n_1)<xo) + c2q§§"_1)(x0) oot Cn¢£Ln_1)(I0) =0
This is set of n linear equations for ¢, cs, - - - , ¢,. The determinant of the coefficients is
W(¢1, ¢o,- -+, dn)(xo) , which is not zero since ¢1, ¢, - - - , ¢, are linearly independent

(Theorem 3.6). Therefore there is a unique solution ¢y, s, - - - , ¢, of the equation3.16),
and this completes the proof.

Theorem 3.8 Let ¢y, ¢, - - - , ¢, be n solutions of L(y) = 0 on an interval I, and let x
be any point in I. Then

Wq¢h¢%-~,¢mﬂx)=6mp[—l/xamﬂd%‘W1¢h¢%-~,¢nﬂww- (3.17)

Proof:

We first prove this result for the simple case n = 2, and then give a proof which is valid
for general n.The latter proof makes use of some general properties of determinants.
Proof for the case n = 2:

In this case

W (1, p2) = p10y — P2,
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and therefore
PPy + P10 — Pl da — P,
= i} — O,
Since ¢, ¢, satisfy v’ + a1 (x)y’ + as(x)y = 0, we get
) Yy Yy Yy g

/1/ = —&1¢/1 — a1,
5 = —a10y — A¢s.

W' (¢1, ¢2)

Then

W (1, ¢2) =p1(—a1dy — azdz) — (—a1¢y — azr) s
= — pra10y — Pra2p2 + P2a1¢ + Paasy
= — a1 (1 — ¢ d2)
= - 01W(¢17 Cbz)

W (g1, ¢2) + a1 W (¢, ¢2) =0.

We see that W (¢4, ¢2) satisfies the linear first order equation y'+a;(z)y = 0, and hence

W (o1, ¢2)(z) = cexp {—/ al(t)dt] ,
Zo
where c is a constant. By putting = = xy, we obtain

c= W(gbl: ¢2)([E0)7
thus proves for the case n = 2.

Proof for a general n:
We let W = W(¢pq, ¢o, -+, ¢,) for brevity. From the definition of W as a determinant
it follows that its derivative 1V’ is a sum of n determinants

W =Vi+Vat 4V,

where V} differs from W only in its k-th row, and the k-th tow of V}, is obtained by
differentiating the k-th row of W. Thus

il by, ¢1 b $1 P

ol 08 ol O ol P

w'=| ¢ O ol D ol ol
qb&"z_l) gb?(ln:—l) gb&"z_l) gb?(ln:—l) qbg:n) ¢£Ln)

The first n — 1 determinant Vi, V5, - -
identical rows. Since ¢1, ¢, - - -

o = —aig" — - — i (= 1,2, n)

,V,,_1 are all zero, since they each have two
, ¢, are solutions of L(y) = 0 we have




and therefore

&
W' = : :
SR
S e =S sl
=0 =0

The value of this determinant is unchanged if we multiply any row by a number and

add to the last row. We multiply the first row by a,,, the second row by a(,,_1), - - - , the
(n — 1) — th row by as, and add these to the last row, obtaining
P1 e O
&, e &
o
gn—z) e g
—a Y —ae Y

Therefore W satisfies the linear first order equation ¢y’ + a4 (x)y = 0, and thus

W(z) = exp [— / al(t)dt] W ().

Corollary 3.1 If the coefficients ay, of L are constants, then

W(qbla ¢2, T gbn)(I) = €—a1($—$0)W(¢1’ ¢2, ) ¢n>($0)

Proof:
A consequence of Theorem 3.8 is that n solutions ¢, ¢o, - - - , ¢, of

L(y) =0
on an interval [ are linearly independent there if and only if

W(¢17 ¢27 e 7¢n)($0) 7é 0

for any particular z, in .

Let us sum up

1. We have proved the properties of the linearly dependent and linearly indepen-
dent solutions by using Wronskian formula.

2. We have characterized the any linear combination of linearly independent solu-
tions is again a linearly independent solution.
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3. Finally, we figured out the Abel’s formula.
Check your progress

1. When r, # r,, find Wronskian W {e™*, e"7|?
(@) (ry — rp)elrrtr2)z (b) (ry — rp)elT1Fr2)e0
(©)(ry — rl)e(”’”)xo (d)(r; — rg)e(””""’)zo

2. If ¢; and ¢, are solution of y” + 2%y’ + (1 —z)y = 0 such that y,(0) = 0, 4(0) = —1
and y,(0) = —1, y5(0) = 1, then the W (y;,y-) on R is
(a) never zero
(b) identically zero
(c) zero only at finite number of points
(d) zero at countable infinite number of points.

3.4 Reduction of the order of a homogeneous equation
Suppose we have found by some means one solution ¢, of the equation
Ly) =y + ar(2)y(n — 1) + ... + an(a)y = 0.

It is then possible to use this information to lower the order of the equation such that it
may be solved by one. The idea is the same as in the variation of constants technique.
We want to find solutions ¢ to L(y) = 0 of the form ¢ = u¢;, where u is any function.
If » = u¢; is the solution, we must have

0= ugp)™ + ar(ug) ™V + - + an_1(udr) + an(usy)

— u(n)¢1 + .4+ uqﬁgn) =+ alu(”_1)¢1 + -+ a1u¢gn_1)

+ ot ap U Py + anud] + anud;.

The coefficient of u in the above equation is just L(¢;) = 0. Therefore, if v = «/, this is
a linear equation of order n — 1 in v,

o™V ot oY +ar(n — DY + L+ anidifo = 0. (3.18)

The coefficient of v(®~Y is ¢;, and hence ¢,(x) # 0 on an interval I this equation has
n — 1 linearly independent solutions v, - - - , v, on I. If x4 is some point in /, and

ug(x) = /x vp(t)dt, (k=2,---,n),

Zo

then we have ), = v, and the functions

1, UPr, -+, Up @y (3.19)

are solutions of L(y) = 0. Moreover these functions form a basis for the solutions of
L(y) = 0 on I. For suppose we have constants ¢, cs, - - - , ¢, such that

11 + ooy + - - + crLundr = 0.

66



Since ¢;(z) # 0 on I this implies
1+ cous + - + cpu, =0, (3.20)

and differentiating we obtain

Couhy + -+ + cpul, =0,
or

Ccovg + -+ - + cpv, = 0.
Since v, - - - , v, are linearly independent on / we have

Cog=-=c¢, =0,

and from [3.20| we obtain ¢; = 0 also. Thus the functions in form a basis for the
solutions of L(y) = 0 on I.

Theorem 3.9 Let ¢; be a solution of L(y) = 0 on an interval I, and suppose ¢1(z) # 0
on I. If vy, --- , v, is any basis on I for the solutions of the linear equation of order
n— 1, and if

v =uy, (k=2,---,n)
then ¢y, us¢y, -+ ,u,¢1 is a basis for the solutions of L(y) = 0 on I.

Proof:
Given ¢, is the solution of

L(y) = y™ + a1 (2)y" ) + ..+ an(z)y = 0.
Now, we find the solution of L(y) = 0 of the term ¢ = u¢;, where u is some function.

L(ugy) =(ug1)" + a1 (ug) ™ + -+ + a, (ugy)
="y + ne, u" VY + -+ ugl
+ar[u" oy + (n — 1)Clu(”_2)¢’1 + .-
+ug{" V] 4+ agon W61 + udh] + anuey
=g + (161 + angn]ul"™V 4o 16"+ ar(n — Doy
Fotan o + [0+ eV -t anen]u

The coefficient of u in the above equation is
O + a4 andy.
Since ¢, is solution of L(y) = 0, we have

a4 andr = 0.
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If ' = v, then

(n—1

610"+ [0l Far g o2 " Far(n— 1) Y+ - a1 = 0. (3.21)

Given: v, - ,v, are (n — 1) linearly independent solution of L(y) = 0. If z, is a point
in I and
U = / vg(t)dy.
Zo
Thus us, - - - ,u, is a solution of equation L(y) = 0. Therefore, ¢, usq, -+ ,u,¢; is @

basis for the solutions of L(y) = 0 on I.
Consider the constant
c1¢1 + caprug + - -+ cpunpr = 0. (3.22)

Given: ¢(z) #0on [
By dividing ¢, (z) on equation [3.22} we get.

c1 + coug + -+ + cpu, = 0. (3.23)
Differentiate the above equation with respect to = on both sides, then we have

Coty + gty + -+ + cpu, = 0
= CoUg + C3U3 + -+ + U, = Ofu), = vy

We have that vs, - - - , v, are linearly independent. This implies that
cpo=cp=---=c¢c, =0,
and ¢, us ¢, - - - , u,¢p are linearly independent. Hence ¢+, us¢y, - - - , u,¢1 is a basis for

the solutions of L(y) = 0 on .
Theorem 3.10 If ¢, is a solution of
L(y) ="+ a1(x)y + az(x)y =0 (3.24)

on an interval I, and ¢;(z) # 0 on I, a second solution ¢, of [3.24on I is given by

¢2(x) = ¢1(x) /xo m exp [— /xo al(t)dt} (3.25)
The functions ¢y, ¢, form a basis for the solutions of [3.24]on I.

Proof:
Let ¢; be a solution of L(y) = 0. Then we have L(¢;) = 0, that is,

1+ a1(2)d) + az(x)pr = 0. (3.26)

Our aim is to find a solution ¢, of L(y) = 0. There is ¢» = u¢; where u is a function.
Since ¢, is a solution of L(y) = 0, then L(¢,) = 0. Therefore,

5+ a1(x)dy + az(x)dy =

0
(ug1)” + a1(z)(uér)" + az(z)(ugr) = 0
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[u"¢1 + ') + ud] + a1 (2)[W'd1 + udh] + az(z)(ug1) =0
u'Pr + 2¢) + ar(z)@)Ju + [¢) + ai(z)@) + ag(x)di]u = 0.
Then by the equation we have,
u' o1 + 20 + a1(x)Pi|u’ = 0. (3.27)
Take v/ = v. Then
o1v" + [2¢) + ar(z)di]v = 0
¢1v" + 2010 + ar(z)prv = 0
Multiply the above equation by ¢,

— 2 + 20100 + ar(x)P3v =0
= (¢7v) + ar(z)(¢Fv) = 0. (3.28)

If we take ¢ov = y, then it becomes
Y +ai(z)y = 0.

Therefore

( >/ mledr_ / 0/ o

Thus, we have
(¢*0) = ce” Jzp 1@}

where z, is a point in [ and c is constant. Since any constant multiple of a solution is
again a solution, we get

Thus

¢2(x) = ¢1(x) /g: me_ /1‘0 al(x)dxds.

Since L(y) = y" + a1(x)y’ + az(x)y = 0 has two linearly independent solutions on .
Hence ¢, ¢, form a basis for the solutions of L(y) = y" + a1(2)y’ + az(z)y =0on I.
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Example 3.1 Find the basis for the solutions of the equation y” — %y =0on0 <z <.

Solution:

It is clear that the function ¢, given by ¢, (z) = z? is a solution on 0 < z < oo, and since
this function does not vanish on this interval there is another independent solution ¢,
of the form ¢y = u¢;. If v = 4/0 we find that v satisfies

220" 4 4dxy = 0, or zy + 4v = 0.
A solution for this is given by
v(r) =2t (0<x<o0),

and therefore a choice for u is

1
u(x):—@ (0 <z < 00).
This implies
1
¢1(7) = —35 (0 <z < ),

but since any constant times a solution is a solution, we may as well choose for a sec-
ond solution ¢y(z) = x~'. Hence z?, z~! form a basis for the solutions on (0 < z < o).
Let us sum up

1. We have characterized the homogeneous equation of order n.
2. We have defined the basis of homogeneous equation of order n.

3. We have rectified the properties of the reduction of the order of a homogeneous
equation.

4. Finally, we solved some illustrative examples.
Check your progress
5. If ¢y (z) = x is a solution of z*y” — xy/ +y = 0 for z > 0, then the second solution
is
(@ ¢o(z) =271 (b) ¢o(x) = xlogz () ¢o(x) =2 (d) () =2
6. Two solutions ¢ of z%y” — 3xy’ + 3y = 0, v > 0 are ¢,(z) = x, $(x) = 2. Find

the third Independent solution.
(@) gs(x) =a7' () ¢s(x) =2® (0) ¢s(x) =2° (d) 5(z) =277

3.5 Homogeneous equations with analytic coefficients

If ¢ is a function defined on an interval I containing a point x,, we say that g is analytic
at z if g can be expanded in a power series about z, which has a positive radius of
convergence. Thus g is analytic at x if it can be represented in the form

o0

g(x) = cxlx — zo), (3.29)

k=0
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where the ¢, are constants, and the series converges for |z — x¢| < 79,79 > 0, all of
its derivatives exist on |z — x| < ro, and they may be computed by differentiating the
series term by term. Thus, for example

g ()= kep(x — zo)F,
k=1

and

g (@) = k(k — Dex(x — z0)*,

k=2

and the differentiated series converge on |z — x| < 7 also.

Theorem 3.11 (Existence Theorem for Analytic Coefficients) Let xo be a real number;
and suppose that the coefficients ay,- - - ,a, in

L(y) = y™ + ar(2)y™ ) + - + an(2)y
have convergent power series expansions in power of x — xy on an interval
|x — x| < rg, 19 >0.
If aq,- -, «, are any n constants, then there exists a solution ¢ of the problem
L(y) = 0,y(xo) = a, -+ ,y" D (w0) = a,

with a power series expansion
d(x) = enlx —xo)" (3.30)
k=0

convergent for |z — x| < ro. We have

kley, = agyr, (k=0,1,--- ;n—1),

and ¢, for k > n may be computed in terms of ¢y, cy,- - - ,c,_1 by substituting the series
B.58|into L(y) = 0.
Proof:

Let us consider the two power series,

oo oo
E Ck’xka E Ckxka
k=0 k=0

x| < Ck, Cp>0,(k=0,1,--+),

and that the series

oo
E OkZL‘k
k=0
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converges on |z| < r, for some r > 0. Then the series

o
E Ckl’k

k=0

also converges for |z| < r. This is usually called the comparison test for convergence.
The second result we require is that if a series

Z g’ (3.31)
k=0

is convergent for |z| < ro, then for any z, |x| = r < r¢, there is a constant M > 0 such
that
Tk’Oék’ SM,(k:O717"')- (3.32)

This is not difficult to show. Since the series [3.31]is convergent for |z| = r its terms

must tend to zero,
k| —

|z log|r® =0, (k= o).

In particular there is an integer NV > 0 such that
loglr® <1, (k> N).
Let M be the largest number among
lo|, ler|r, -+, Jan|r™, 1.
Then clearly[3.32]is valid for this M. We now consider the equation
Ly) =v" + ar(x)y’ + b(x)y =0, (3.33)

where «, b are functions having expansions
a(x) = Z apz®,  b(z) = Z Bk, (3.34)
k=0 k=0

which converge for |z| < 7y for some ry > 0. Given any constants «;, a; we want to

produce a solution ¢ of satisfying
¢ = az, ¢/(0> = (g,

and which can be written in the form
oo
o(z) = Z cra®, (3.35)
k=0
where the series converges for |z| < ro. If this series is convergent we must have

Co = (a1,
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and the constants ¢;(k < 2) must satisfy a relation, which we now compute. We have

oo

¢ (r) = Z(k‘ + 1) cpp 2,

k=0
and

— Z(k +2)(k 4 1)cppoz”. (3.36)
k

i
o

Now we obtain

al2)¢/(x) = (Z a) (Z(kmcwk)
a(z)d'(x) = Z (Z k(7 + 1)cj+1> R (3.37)

and

0
0o k

Adding the above equations we get

o0

=D |k

k=0

)k +2 Ck+2+zoék i+ Den+ > Bee jC]]x =0.

7=0

Thus the ¢, must satisfy

(k+2)(k+ 1)cpyo = [Z ap—j(j+ Dejrr + Zﬁk JCJ] , (3.39)

(k=0,1,2---).
It is enough to show that if the ¢, for £ < 2, are defined by|3.36] then the series

Z cra® (3.40)

is convergent for |z| < ro. To prove this we can use of the two results concerning
power series we mentioned earlier. Let » be any number satisfying 0 < r < r,. Since
the series in[3.31] are convergent for |z| = r we have a constant M > 0 such that

joj|r? < M, |Bilrf S M, (j=0,1,2,--).
Using this in we find that

k
M
(k+2)(k+ ekl < D MG+ e + el 7
7=0
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k
Z G+ 1) [ejan| + il 77 + M |epen| 7. (3.41)

7=0

Now let us define
CO ’Co| Cl |C1’

and Cy, for k > 2 by

k

M . ;
(k+2)(k+1)Chez = > G+ DCha + Cyl 17 + MChaar, (3.42)
=0

(k=0,1,2,---). Comparing [3.41] with [3.42] we have

Now, we have to find for which x the series
> Crat (3.44)

is convergent. We find that

T
I

(k’ + 1)k0k+1 = ’[’k_ [(] + 1)Cj+1 + Cl] ’f’j + MOk’l“

-1
J

Il
o

and

M SN .
k(k—1)Cy = = D G+ DCha + Cil 7 + MCyyry
=1

for large k. From these expressions we obtain

k—2

M .
’/’(k + 1)]€Ck+1 = m Z [(] + 1)Cj+1 + C]} r! + M [ka + Ck—l] T+ MCk’f’2
j=0
k’(k’ — 1)Ck — Mck,1T3 + Mkar + MCk,ﬂ’ + ]\46%7’2
[k(k — 1) + Mkr + Mr?] Cy. (3.45)
Hence
Crpra™ | [k(k —1) + Mkr + Mr?] 2]
Cpxh | r(k+ 1)k o

which tends to co.

Thus, by the ratio test, the series [3.40| converges for |z| < r, and since r was any
number satisfying 0 < r < ry, we have shown at last that the series|3.40| converges for
|z| < 7.

Let us sum up

1. We have characterized the homogeneous equation with analytic coefficients with
examples.
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2. We have discussed the existence theorem for analytic coefficients.

3. Also, we defined the comparison test for convergence for proving the existence
result.

Check your progess

7. State Existence Theorem for Analytic Coefficients.

3.6 The Legendre equation

Some of the important differential equations met in physical problems are second
order linear equation with analytic coefficients. One of these is the Legendre equation

Lly) = (1 —2*)y" — 22y + ala+ 1)y = 0, (3.46)

where « is a constant.
Dividing by (1 — 2?%), we obtain the standard form of given equation as

2z ala+1)
/! /
Y12 * 1—22

y = 0. (3.47)

The coefficients of the resulting equations

—2x
“o) =1
ala+1)
o) =5
are analytic at x = 0. Indeed,
1 _ 2 4 _ - 2k
=1ttt +~~—k2;:c :

and this series converges for |z| < 1. Thus a; and a, have the series expansions

(—2)1‘2k+1

M)

ai(x)

il
[e=)

afla + 1)z,

M

as(x)

i
[e=)

which converge for || < 1. From Theorem 3. 12 it follows that the solutions of
L(y) = 0 on |z| < 1 have convergent power series expansion there. We proceed to find
a basis for these solutions.

Let ¢ be any solution of the Legendre equation on |z| < 1, and suppose

H(z) =co+ x4y’ + - = Z cprt. (3.48)
k=0
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We have

¢'(x) = ¢ +2cow + 3czx? + - - = Z kepa® ™t
—2x¢/(x) = Z —2kcpa®,
k=0
" (x) =205+ 3 2c3x + -+ = Z k(k — 1)cpa®2,
" (z) = Z —k(k — 1)cpa®.
k=0

Note that ¢"(z) may also be written as
= (k+2)(k+ 1)cpoa®, (3.49)
k=0

Since ¢ is a solution of L(y) = 0, we get

(1 —2%)¢"(z) — 22¢/(x) + a(a + 1)p(z) = 0. (3.50)

Substitute ¢(z), ¢'(x), ¢”(x) values in the above equation, we get

e}

Zk+2 V(k 4+ 1)cpiox —Z —k(k —1)ckx —QZkzckx +ala+1 chx =0
k=0 k=0 k=0

Z [(k +2)(k 4+ 1)cppe — k(k — 1V)eg — 2ke + aa + 1)¢]z* =0,
k=0

i[(k‘ +2)(k + Deggo + (@ + &+ 1) (a — k)ep]a® =0.
k=0

We must have all the coefficients of the powers of x equal to zero. Hence

(k+2)(k+ Degro+ (a+k+1)(a—k)ep =0, (k=0,1,2,--+)
(k4+2)(k+ 1)cpyo = —(a+ k+1)(a— k). (3.51)
This is the recursion relation which gives ¢, in terms of ¢;. For £ = 0 we obtain
a+1l)a
C2 = —%Cou
and for k = 1 we get,
(a4 2)(a—1)
C3 = — 3.9 C1.
Similarly, letting k = 2, 3 in|3.51| we obtain
B _(a+3)(a — Q)C (a4 3)(a+1)ala — 2)0
h 4-3 2 4-3-2 v
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o _latBe=3) (atda+@-1)(=3
5-4 5-4-3-2

The pattern now becomes clear, and it follows by induction that for m = 1,2, - - -

Ct.

(a+2m—1)(a+2m—-3) - (a+Da(a—2)--- (o —2m + 2)

Cam = (=1)" (2m)!

Co,

(a+2m)(a+2m—2)---(a+2)(a—1)(a—3) - (a —2m+ 1)

Com+1 = (—1) (2m I 1)! Cy.
All coefficient are determined in terms of cpand ¢;, and we must have
d(z) = cpp1(r) + cr12(),
where . . )
sy 1o @FDa s (@80t hala=2) 4
2! 4!
or
e mlat+2m—D(a+2m—-3)...(a+Dafa=2)---(a =2m+2) ,,
1 (x) = 1+m21( 1) ) z?m,
(3.52)
and
bolz) = 2 — (a+2)(a — 1)x2+ (a+4)(a+2)(a— 1)(04—3)x3 .
3! 5!
or

m@+2m)(a+2m—=2)---(a+2)(a—1)(a=3)---(a=2m+1) 5.4
2m+ 1) v

$o(x) = 2+ (-1

(3.53)
Both ¢; and ¢, are solutions of the Legendre equation, those corresponding to the
choices

Cozl,Clzo, andcoz(),01 :1,

respectively. They form a basis for the solutions, since

We notice that if « is a non-negative even integer
n=2m, (m:O71727"')a

then ¢; has only a finite number of non-zero terms. Indeed, in this case ¢, is a poly-
nomial of degree n containing only even powers of x. For example,

¢1(ZB) 1, (05:0%
é1(z) =1 —32°, (o =2),
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é1(z) =1 — 102> + %x‘l, (a=4).

The solution ¢, is not a polynomial in this case since none of the coefficients in the
series [3.53] vanish.

A similar situation occurs when « is a positive odd integer n. Then ¢, is a poly-
nomial of degree n having only odd powers of z, and ¢; is not a polynomial. For
example

¢o(x) =2 — gxg, (v =3),
bo(x) =2 — 17511‘3 + 251x5, (a=5)

We consider in more detail these polynomial solutions when o = n, a non-negative
integer. The polynomial solution P, of degree n of

(1 —22)y" — 2xy' +n(n+ 1)y =0, (3.54)

satisfying P,(1) = 1 is called the n-th Legendre polynomial. In order to justify this
definition we must show that there is just one such solution for each non-negative
integer n. This will be established by way of a slight detour, which is of interest in
itself.

Let ¢ be the polynomial of degree n defined by

o(e) = L (22 1y

~dan
This ¢ satisfies the Legendre equation [3.54] Indeed, let
u(z) = (22 — 1)™
Then we obtain by differentiating
(% — 1)u' — 2nzu = 0.

Differentiating this expression n + 1 times yields

(22 — D)u"? + 2z(n 4+ Du™ + (n 4+ Dnu™ — 2nzu™™ — 2n(n + 1)u™ =0,
Since ¢ = u(™ we obtain

(1 —a%)¢"(x) — 22¢(x) + n(n + 1)¢(z) =0,

and we have shown that ¢ satisfies

This polynomial ¢ satisfies
(1) = 2"nl.

This can be seen by noting that

#(a) = (@ = 17 = [(o = 1)"(z + 1))



= [(z — 1)"]"™(z + 1)" + terms with (z — 1) as a factor
=nl(z+1)" + terms with (x — 1) as a factor.

Hence ¢(1) = n!2", as stated.
It is now clear that the function P, given by

1 a
—onpl dan

P, (z) (2?2 —1)" (3.55)

is the n-th Legendre polynomial, provided we can show that there is no other polyno-
mial solution of whichis1atz = 1.

Suppose ¢ is any polynomial solution of [3.54] Then for some constant ¢ we must
have ¢ = c¢, or v = c¢,, according as n is even or odd. Here ¢, ¢, are the solutions

of Suppose n is even, for example. Then, for |z| < 1,
Y = cp1 + dp

for some constants ¢, d, since ¢y, ¢, form a basis for the solutions on |z| < 1. But then
1 — c¢y is a polynomial, whereas d¢, is not a polynomial in case d # 0. Hence d = 0.
In particular the function P, given by|3.55|satisfies P, = c¢; for some constant ¢, if n
is even. Since 1 = P,(1) = c¢1(1), we see that ¢;(1) # 0. A similar result is valid if n
is odd. Thus no non-trivial polynomial solution of the Legendre equation can be zero
at x = 1. From this it follows that there is only one polynomial P, satisfying and
P,(1) =1, for if P, was another, then P, — P, would be a polynomial solution, and
P,(1) — P,(1) = 0.

The first few Legendre polynomials are

3 1

PU(‘/E) :]-a Pl(l') =T, PQ(x> - 5!132 - 57
) 3 35 15 3
Pg(ﬂ?) 25133 — 537, P4(Q3) = §Q34 — Z$2 =+ g

Let us sum up

1. We have discussed the Legendre’s equations and functions used for solving dif-
ferential equations..

2. We have rectified the solutions of the Legendre equation with suitable examples.
Check your Progress

8. The value of the Legendre polynomial P (x) is

(a) %:p -1 (b %ﬁ — %a:?’ (©) %:BZ — % (d) % — %932
9. The value of Legendre polynomial Ps(z) is
(a) ng — % (b)%ac3 — gaz (©) 222 + g (d)%x?’ + %x
10. The n-th Legendre polynomials P,(x) is given by
- 1 d" 2 n — Lﬁ 2 n
@) Pule) = 2nn! dxm (= 1) (b) Pufa) = 2nn! dan (" +1)
1 dr N ol ar o,
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Summary
This unit discusses linear differential equations with variable coefficients. The topics
include:

e Linear Independence and Wronskian: Understanding linear independence of so-
lutions using the Wronskian.

e Reduction of Order: A technique used when one solution of a second-order ODE
is known.

- Given one solution ¢, (z), a second solution ¢,(x) = v(z)¢;(x) can be found.

e Series Solutions: Used when variable coefficients prevent simple analytic solu-
tions. Methods like Frobenius allow solutions near singular points.

e The Legendre’s differential equation can be solved in series of ascending or de-
scending power of z. The solution in descending powers of = is more important
than the one in ascending powers.

e The solution of Legendre’s equation is called Legendre’s function.
Glossary

e Basis: A basis is a set of linearly independent vectors that span a vector space,
meaning any vector in the space can be expressed as a combination of these basis
vectors.

e Power series: A power series is a way of expressing a function as an infinite
sum of terms that involve powers of a variable. Each term in the series has a
constant coefficient and a certain power of the variable, allowing functions to be
approximated or studied around a specific point.

e Legendre equation: The Legendre equation is a type of differential equation that
arises in problems with spherical symmetry, such as gravitational or electric
fields. Its solutions, known as Legendre polynomials.

e Abel’s formula: Abel’s formula, also known as Abel’s identity, relates the Wron-
skian of two solutions of a second-order linear differential equation to the coef-
ficients of the equation. It shows that the Wronskian either remains constant or
varies exponentially, helping to analyze the behavior of solutions.

Self-assesment questions

1. Let P,(z) be the Legendre polynomial of degree n and let P, 11(0) = 5 pm11(0), m =

1,2, . If P,(0) = 22, then [', P2(2)dx =,

(@ 2 (b) 2 © 2 (d) 2
2. Using the fact that Py(z) = 1 is a solution of
(1—a%)y" =22y =0,

find a second independent solution by the method of Sec. 3.5.
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. Verify that the function (); defined by
Qu() = 5 log((1+2)/(1 ) = 1(ja] < 1),
is a solution of the Legendre equation when o = 1.
. Show that P,(—1) = (—1)".
EXERCISES
. Consider the equation
L(y) =" + ar(x)y’ + ax(x)y =0,

where a1, a, are continuous on some interval /. Let ¢;, ¢ and 11, 1), be two bases
for the solutions of L(y) = 0. Show that there is a non-zero constant & such that

Wy, ¢2)(x) = kW (¢, ) ().

. Consider the same equation as in Ex. 1. Show that a; and a, are uniquely
determined by any basis ¢, ¢, for the solutions of L(y) = 0 (Hint: Try solving
for ay, a; from the equations

L(le) =0, L(¢2) =0

Show that
¢1 @2 ¢ P
I o P )
W(o1,¢2) " W(on,¢2)
. Consider the equation
y' +alz)y =0,

where « is a continuous function on —oco < x < oo which is of period ¢ > 0. Let
¢1, @2 be the basis for the solutions satisfying

¢1(0) =1,  2(0) =0,
¢1(0) =0, ¢5(0) =1.
(a) Show that W(¢y, ¢2)(x) =1 for all z.
(b) Show that there is at least one non-trivial solution ¢ of period ¢ if, and only
if,
$1(§) + ¢5(§) =2
(c) Show that there exists a non-trivial solution ¢ satisfying
oz +§) = —o(x)
if, and only if,
P1(§) + ¢5(§) = -2
(Hint: Show that such a ¢ exists if, and only if,
¢(§) = —¢(0)and¢’(§) = —¢'(0)
See Ex. 6, Sec. 3.)
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(d) If ¢1(&) + ¢4(&) = —2 show that there exists a non-trivial solution of period
2¢. (Hint: Use (c). Alternately, use (b) with £ replaced by &.)

4. A differential equation and a function ¢, are given in each of the following.
Verify that the function ¢, satisfies the equation, and find a second independent
solution,

(@ 2% —Tzy' + 15y =0, ¢1(x) = 23, (z > O)

(b) v’ —4dzy + (42% —2)y =0, ¢1(x) = €*

(@ 2y’ —(z+ 1)y +y =0, ¢1(x) = e, (z > 0).
(d (1—2°)y" —2xy +2y =0, gbl() z,(0 <z <1).
(&) y' —2zy +2y=0, ¢:(z) =z, (x> 0).

5. One solution of

3 1z 31‘2 ”+6:cy’—6y:0

for x > 0 is ¢ (z) = z. Find a basis for the solutions for z > 0.

6. Find two linearly independent power series solutions (in powers of x) of the
following equations:

@y —ay +y=0
(b) v +32%y —a2y =0
(©) y" =2’y +0

(d) v+ 23y + 2%y =0
(e) y'+y=0.

For what values of = do the series converge?

7. Find the solution ¢ of

'+ (@ —-1)% —(z—1y=0

in the form

o0

o(e) = 3 aule — 1),

k=0
which satisfies ¢(1) =1, ¢'(1) = 0. (Hint: Let x — 1 =¢.)

8. Find the solution ¢ of
(L+2%)y" +y=0

of the form

o0

o) =3 e,

k=0
which satisfies ¢(0) = 0,¢'(0) = 1. (Note: When the equation is written in the
form

yl/ +

1+ﬂy=Q
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10.

11.

it is one with analytic coefficients at x = 0, since

1 oo
1—'_:1:2:1—Q32+x4—$2+"‘:Z(—l)k$2k,
k=0

which converges for |z| < 1. However to compute ¢ it is best to substitute the
series for ¢ directly into the given equation.) What is the largest » > 0 such that
the series for ¢ converges for |z| < r?

The equation

y/l + emy — O
has a solution ¢ of the form
o(x) = Z cpx”
k=0

which satisfies ¢(0) = 1,¢'(0) = 0. Compute cy, c1, ¢a, ¢3, ¢4, ¢5. (Hint: ¢, = ¢*(0)

and ¢/ (x) = —e*6(z) )

Compute the solution ¢ of

/1,

y" —axy=0
which satisfies ¢(0) = 1, ¢'(0) = 0,¢"(0) = 0.
The equation

y" —2zy’ + 20y = 0,

where « is a constant, is called the Hermite equation.

(a) Find two linearly independent solutions on —oco < z < 0.

(b) Show that there is a polynomial solution of degree n, in case « = n non-
negative integer.

(c) Show that the polynomial H, defined by

22 d" g2

H,(xz)=(=1)"e T

is a solution of the Hermite equation in case « = n is a non-negative integer.
This solution H,, is called the n-th Hermile polynomial. (Hint: If u(z) =
e~*" show that u/(z) + 2zu(z) = 0. Differentiate this equation n times to
obtain

Hyq(x) —22H,(z) + 2nH,_1(x) =0 (3.56)
n > 1. Differentiate H,, to obtain

H)(x) =22H,(x) — Hpy1(2) (3.57)

for n > 0. Use |3.56| and |3.57| to show H,, is a solution of the Hermite
equation.)

(d) Computs Hy, Hy, Ho, Hs.
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12. Show that the coefficient of 2" in P(x) is

13. Show that

(Hint: Note that
[(1—=2)P)) = —n(n+1)P,,
[(1-— :L‘Q)Péz]/ =—m(m+1)P,.
Hence

Pyl =2?) B = Po[(1 = 2®) B ) = {(1 = 2*) [P P, — P P}

— [m(m + 1) — n(n + 1) PPy

Integrate from —1 to 1.)

14. Show that

/_1 P2(x)dz — —2

1 2n+1
(Hint: Let u(z) = (z* — 1)". Then from
1
- 5
P,(x) = S (x).

Show that u®)(1) = u®(—~1) = 0if 0 < k < n. Then, integrating by parts,

1

/l u™ (2)u™ (z)dz = u™ (z)uV ()

1

—/u("+1)(x)u(”1)(m)dm
1
= —/ ™ ()™ (z)dx

-1

o (_1)n/ U (V) da.

1

= (2n)! /1 (1 —2*)"dx.

1

To compute the latter integral let = = sin #, and obtain

1 5 n,,1\2
/ (1 —2*)"dr = 2/ cos ) gdg = M)
1 0 (2n + 1)!

Answer for check your progress

1. Existence Theorem: Let ay,as, - ,a, be continuous functions on an interval [
containing the point z. If oy, as, - - - , a,, are any n constants, there exists a solution ¢
of

L(y) = y™ + ay(x)y™ D + -+ a,(z)y =0
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on [ satisfying
Qb(ffo) = Qq, QS(I)(J:O) = Qg," - ’¢(n—1)<m0) = Qp.

2. Uniqueness Theorem: Let zy be in I, and let oy, as, - ,, be any n constants.
There is at most one solution ¢ of L(y) = 0 on [ satisfying

d(x0) = a1, ¢ (20) = g, - -+, 3" () = .

3.(@ 4.(@ 5.0 6.()
7. Existence Theorem for Analytic Coefficients: Let xy be a real number, and suppose
that the coefficients a4, - -- ,a, in

L(y) = y" + ai(x)y" ) + -+ an(x)y

have convergent power series expansions in power of z — 7, on an interval

|z — 20| < 1o, 10 >0.
If aq,--- ,«, are any n constants, then there exists a solution ¢ of the problem

L(y) = 0,y(zo) = ar, -+ ,y" D (2g) = an,

with a power series expansion

o(x) = Z cr(x — zo)* (3.58)

k=0
convergent for |z — xy| < 9. We have
kle, = agyr, (k=0,1,--+ ;n—1),

and ¢, for £ > n may be computed in terms of ¢y, ¢, - - - , ¢,_1 by substituting the series

3.58]into L(y) = 0.
8. (c) 9. (b) 10. (d)
Suggested Readings

1. E. A. Coddington and N. Levinson. Theory of Ordinary Differential. Equations.
New Delhi: Tata Mc Graw-Hill, 1972.

2. G. F. Simmons, Differential Equations with Applications and Historical Notes,
Tata McGraw Hill, New Delhi, 1974.

3. N. N. Lebedev, Special Functions and Their Applications, Prentice Hall of India,
New Delhi, 1965.
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Unit 4

Linear Equations with Regular Singular
Points

OBJECTIVE:

Following completion of this unit, you will be capable of understanding the concept of
linear equations with regular singular points of homogeneous equations and the less
simple exceptional case. Further, we explain regular and irregular singularities. And
we discuss the significance of the Frobenius method and analyze the general solution
of Bessel’s equation. Finally, we understand how Bessel’s equation is integrated for
n = 0 and explain the concept of recurrence formula for .J,(z).

4.1 Introduction
In this unit we investigate linear equations with variable coefficients
ao(x)y™ + ay(2)y" Y 4 -+ an(z)y = 0. 4.1

We shall assume that the coefficients ag, aq, - - - , a,, are analytic at some point xy, and
we shall be interested in an important case when ay(z() = 0.

Definition 4.1 A point x such that ag(zo) = 0 is called a singular point of the equation
4. 1]

Definition 4.2 We say that the point x is a regular singular points for equation if
the equation can be written in the form

(2 — 20)"y™ + by (z — 20) ™ Vy Y ... £ b, (2)y = 0. 4.2)
near x, where the functions by, by, - - - , b, are analytic at xy.
If the functions b, by, - - - , b, can be written in the form
be() = (v —20)Bu(z),  (k=1,--- .n),
where 3, - - , 3, are analytic at z, we see that [4.2] becomes
y ™ 4 Bu(@)y " 4 Balz)y =0 4.3)
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upon dividing out (z — x¢)". Thus is a generalization of the equation with analytic
coefficients.
An equation of the form

co(w)(z = 20)"y"™ + e1(@)(x — o) "y 4 e (x)y = 0

has a regular singular point at z if ¢g, ¢y, - - - , ¢, are analytic at xg, and cy(xy) # 0. This
is because we may divide by ¢q(x), for x near x, to obtain an equation of the form

with bi(z) = () , and it can be shown that these b, are analytic at x.
co(x)

We first consider the simplest case of an equation, not of the type having
a regular singular point. This is the Euler equation, which is the case of with
by, b, -+ , b, all constants. For x > 1z such solutions ¢ turn out to be of the form

6(x) = (z — 2) o (2) + (x — 20)"pla) log(x — o),

where r, s are constants, and o, p are analytic at xy. The method used is to show
that the coefficients of the series for the analytic functions o, p can be computed in
a recursive fashion, and then the series obtained actually converge near the singular
point.

Example 4.1 Consider the equation
3
2y =y = 7y =0. (4.4)

The origin x¢ = 0 is a singular point, but not a regular singular point since the coefficient
—1 of ¢ is not of the form xb,(x), where b; is analytic at 0. We may formally solve this
equation by series

Z cpx”, (4.5)
k=0
where the coefficients c; satisfy the recursion formula
3
(k+ 1)egyr = (k2_k_1> Ck, (k=0,1,2,---). (4.6)
If ¢y # 0, the ratio test applied to shows that
k+1 22—k —3
Ck+1T . 1
P P |z| = o0, “4.7)

as k — oo, provided |z| # 0.Thus the series [4.5|will only converge for x = 0, and therefore
does not represent a function near x = 0, much less a solution of 4.4}

4.2 The Euler equation

A second order equation having a regular singular point at the origin is the Euler
equation

L(y) = 2*y" + axy + by =0,
where a, b are constants.We first consider this equation for x > 0, and observe that the

coefficient of y*) in L(y) is a constant times z*. If r is any constant, 2" has the property
that its k-th derivative times z* is a constant times 2".
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Theorem 4.1 Consider the second order Euler equation

2%y +axy +by=0 (a,bconstants),

and the polynomial q given by
q(r)=r(r—1)+ar+b.

A basis for the solutions of the Euler equation on any interval not containing x = 0 is
given by
G1(x) = [z, da(x) = |2,

in case ry, o are distinct roots of ¢, and by
¢1(x) = |z, ¢o(x) = 2| log ||,
if 1 is a root of q of multiplicity two.

Proof:
Let us consider the second order Euler equation having a regular singular point at the
origin
L(y) = 2*y" + axy' + by = 0, (4.8)
where «, b are constants.
We first consider this equation for 2 > 0, and observe that the coefficient of y*)
in L(y) is a constant times z*. If r is any constant, " has the property that its k-

th derivative times x* is a constant times z”. This suggests trying for a solution of
L(y) = 0 a power of z. Let y = 2". Then

y =ra" Y =r(r—1a"?,
and

L(z") = 2°r(r — 1)2" % 4+ axra" " + ba"
=r(r—1)z" + arz” + ba"
=(r(r—1)+ar+0b)a"
L(z") = q(r)x", (4.9)

where ¢(r) =r(r — 1) + ar + b.
It is clear that if r; is a root of ¢, then

L(z™) = 0.

Thus the function ¢, given by ¢ (z) = 2™ is a solution of [4.8|for x > 0.
Case(i): If r, is the other root of ¢, and r; # ry, we obtain another solution ¢, given

by ¢o(z) = x".
Case(ii): If the roots r; = ry(repeated roots), we obtain

q(r1) =0, QI(T1> =0.
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Differentiating L(z") = ¢(r)z" with respect to r, we get

= L (2" log x)
= 2*(z"log )" + ax(a" logz)' + b(a" log ). (4.10)
Now
1 /
(x"logx)" = (rxr_l log z + xr—) = (ra" 'logz + xr_l)/
x
1
=r(r—1)a"?logx +ra" 1=+ (r — 1)a" 2
x
=r(r—1)a"?logx +ra" 2+ (r — 1)a"?
= 2" 2(r — 1)[rlogz + 1] +ra" 2 (4.11)
Substitute the value of in[4.11, we get
%L(x’“) =2” [z"%(r — 1)[rlogz + 1] + ra"?] + az [ra" " logz + 2"~ + b(a" log x)

(14+rlogx)(r—1)z" +rz" +alz"(rlogz + 1)] + b(z" log x)
[(1+7rlogz)(r—1)+7r+a(rlogz+ 1)+ blogx] "
[(r—=1)4+r(r—1)logx +r+arlogx + a+ blogz] x"

=[(r(r—=1)+ar+b)logx+r—1+r+alz"

[
[

= [q(r)logx 4+ 2r — 1+ a] 2"
q(r)logx + ¢'(r)] z"

and if » = r; is a repeated root of ¢(r), we get q(r1) = 0,¢'(r;) = 0. Therefore

0
or
Therefore ¢, = 2™ logx is a second solution associated with the root r;. Thus ¢; =
2™, ¢ = 2" log x are solutions of the given equation.
In either case the solutions ¢y, ¢ are linearly independent for z > 0.
Case(i):
If r1 # ry, and ¢y, ¢, are constants such that

[L(z™)] = L[z log 2] = 0.

axr™ +cx™ =0, (z>0),
then

g+ ™ =0, (x>0). 4.12)
Differentiate with respect to =, we get

0+ (ry — Tl)CQ:E”’_”_l =0
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= cy =0,
and from [4.12| we obtain ¢; = 0 also.
Case(ii):
If 1 = ry, and ¢y, ¢, are constants such that
™ + cx™logr =0, (x> 0),
Dividing the above equation by 2, then

¢+ celoge =0, (x>0). 4.13)

Differentiating with respect to x, we get

1
0+62—:O
X
= cy =0,

and from [4.13|we obtain ¢; = 0 also.
We define 2" for r complex by

g" =% (1> 0).

Then we have

(z") = r(logz)e"'8® = rg~tg" = ra" !,

and 3 3
—(2") = —(
or or

which are the formulas we used in the calculations.

Now we have to find the solutions of for the case x < 0 also. In this case consider

(—x)", where r is a constant. Then we have for = < 0

e’"log“”) = (log I)@“ng =x2"log,

y=[(—2)=y =r(—2)" =y =r(r—1)(—2)"2,

and hence

8
—
|
8
N—
3
I
<
—
|
8
S~—
- =
8
[N}
—
|
8
S~—
—
I

r(r—1)(—x)".
Thus

L[(=2)") = 2®r(r = 1)(=2)""* + az(—r)(=2) " + b(—z)"
=r(r—1)(—z)" +ar(—z)" + b(—z)"
=(r(r—1)+ar+0b)(—z)
=q(r)(—x)", (x < 0), 4.149)

where ¢(r) is the polynomial defined by ¢(r) = r(r — 1) + ar + b.
Thus, L[(—z)"] = 0if ¢(r) = 0. (i.e)(—=z)" is a solution of L(y) = 0 if and only if r is a
root of the polynomial ¢(r).

Now, ¢(r) = r?+ (a — 1)r + b is a second degree equation. By fundamental theorem
of algebra, ¢(r) has two roots r; and 7.
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Case(i):

If r1 # ro, then ¢y (x) = (—2)™, ¢2(x) = (—2)™ are the distinct independent solutions
of L(y) =0 for z < 0.

Case(ii):

If 1y = ry, clearly (—z)™ is a solution of L(y) = 0. Since r; is a repeated root of ¢(r),
we have ¢(r,) = 0,¢/(r;) = 0. Now

grtt=a)) =L (g (-ay)

= L{(—x)"log(—=)] (4.15)
and
D g =ay) = 2 gtr)es=]
= o [glr)er =)
= g(r)e" 5 log(—a) + /()
=q(r) ) :E)

r)(—x)" log(—x) + ¢'(r)(—
= [q(r) log(—=x) 4+ ¢'(r)] (—x)". (4.16)

Now equating the equations [4.15|and [4.16], we get
L[(=x)"log(—x)] = [q(r)log(—x) + ¢'(r)] ()"

Ifr=mr

L{(=z)" log(=x)] = [q(r1) log(—z) + ¢'(r1)] (=z)™.
This implies that (—xz)™ log(—=x) is a solution of L(y) = 0. Thus ¢;(z) = (—z)™ and
¢o(x) = (—x)™ log(—x) are the solutions of L(y) = 0.

For z > 0,
o1(x) =2, ¢o(x) = 2™, ifry #ro,
o1(z) = 2™, ¢Po(x) = 2™ logx if r{ = 7o.
For x < 0,
6u(x) = (—o)", Gale) = (=)', i #1,
O1(z) = (=)™, ¢o(x) = (—x)" log(—x), ifry =rs.
Since || = z for x > 0, and |z| = —x for z < 0, we can write the solutions for any
x#0

in the following way:

Gr(x) = [x[™, da(x) = [z[*, (2 # 0)

in case r; # ro, and

¢1(x) = 2], @a(x) = [x]" log|a], (x #0)

in case r{ = 7.
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Example 4.2 Find a basis for the the solutions of the equation

ny//+$y/+y: 0

for the case = # 0.

Solution:

Given z%y” + zy’ + y = 0. The polynomial ¢ is given by

qir)=r(r—1)+r+1
= —r4r+1
=724 1.

Its roots are r; = i,7o = —i. Thus a basis for the the solutions is given by

¢1(:L') = |x|z7 ¢2(x) = |x|_i> ("E 7é 0)7

where we have |z| = e'l8l2l.
Note that in this case another basis 1, ¢ is given by

Y1(z) = cos(logz[),  2(x) = sin(log|z]), (z #0).
Theorem 4.2 Let r1,79,- - , 14 be the distinct roots of the indicial polynomial q for
L(y) = 2"y™ + ayz" 'y + - 4 any = 0, (4.17)

and suppose 1 has multiplicity m,. Then the n functions

‘x’h? ’x‘ﬁ 10g |.1'|, Ty ’x‘ﬁ logmlil ’%‘,
||, |2 log |z, - - , |2|" log™ " |z;
o™, Jal"* log fal, -+ , 2" log™ " [o

form a basis for the solution of the n-th order Euler equation on any interval not
containing x = 0.

Proof:
For any constant r, we have

y = |z|",
y = (Jz|") = rlz|"!
y" = (lz[")" =r(r—1)]z[>

yk — (|q;|7">k — 7’(7“ — 1) R (T —k+ 1)|x’r—k
[E(k)(|q;|7“)k —r(r—1)---(r—k+1)|z|"
Then

L(|z|") = JZICT(T -1 (r—k+ 1)|x|’"_k + alxk_lr(r —1)--(r— k;)|:1c|7"_k_1 + -+ ag|z]”
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r(r—1)---(r—k+D]z|"+ar(r—1)---(r —k)|z|" + - + aglz|"
=@rr—-1--r—k+)+ar(r—1)-(r—Fk) + - +a)|z|
q(r)zl", (4.18)

where ¢ is the polynomial of degree n defined by
qg(ry=r(r—=1)---(r—=n+1)+ar@r—1)--(r—m+2)+--+ay,.

This polynomial is called the indicial polynomial for the Euler equation We
obtain

o o
Sreltlal) = £ (zlel)

ak: log |z|" 8k rlog |x|
(e ) =2 ()

(e“og‘g”| log|x|) L( log |z[" log\:c])
(|z]" log |])

L\xl q"(

r) +kq" 1 (r) log ||
PR

2l

L
L
L
¢'k — 2)(r)log? || 4 - - - + q(r) log" \x|] |z|". (4.19)

If v, is a root of ¢ of multiplicity my, then

q(r1) =0,q'(r1) =0, ¢™ " (r1) = 0,

and we see that |z|™, |z|™ log|z|,--- ,|z|" log™ ' |z| are the solutions of L(y) = 0.
Repeating the process for each root of ¢ we obtain that the result

Ts
Y

2], 2™ log @], -, [ log™ " al; -+ ;&

x|™ log |x|, - -, |x|™ log™=~* ||

form a basis for the solutions of the n-th order Euler equation for any interval not
containing x # 0.
Let us sum up

1. We have defined a second-order equation having a regular singular point as the
Euler equation.

2. Finally, we solved some illustrative examples.
Check your progress

1. The solution of the differential equation x?y” + zy’ + 4y = 0 for |z| > 0 is given

by,
(@) o(z) = 1|z + colz| ™ (b) o(x) = c1lz]* + cola|*
© o¢(z) = c1|z|7* + caolx| 7% (d) None of these.
2. The solution of differential equation z?y” + xy — 4y = —x for x > 0 is given by,
(@) ¢(z) = 12 + cor ™ (®) ¢(x) = c1a7? + ca?
(© ¢(x) = cra™3 + cor™2 (d) None of these
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4.3 Second order equations with regular singular points-
an example

The second order equation with regular singular point at z, has the form
(z = 20)%" + a(z)(@ — 2o)y + b(x)y =0 (4.20)

where a(x),b(z) are analytic at z,. Thus a, b has the power series expansions

r) = Z gz — 20)", b(z) = Zﬁk(aj — 20",

which are convergent on some interval |z — zy| < rg, for some rq > 0.
Lett =z — zy. Then z = 2y + ¢, and

and

b(t) = b(zo + 1) = Zﬁk zo +t — x0)"

= Z B (1)

The power series for a,b converge on the interval |t| < r, about ¢t = 0. Let ¢ be any
solution of [4.20} and deﬁne ¢ by

Then
do = do
a(t) g(ﬂﬁo + 1),
d2¢ d2¢
ﬁ(t) = @(1’0 +1),
and

o PO dG s
t W(t) +t (t)%(t) +b(t)o(t) =0
Thus ¢ satisfies
t2u” + a(t)tu’ + b(t)u = 0, (4.21)
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where now «' = du/dt. This is an equation with a regular singular point at ¢t = 0.
Conversely, if ¢ satisfies the function ¢ given by ¢(z) = ¢(x —x,) satisfies
In this sense [4.21]is equivalent to [4.20
With 2y = 0 in [4.20| we may write 4.20| as

L(y) = 2%y" + a(x)zy’ + b(z)y =0, (4.22)
where a, b are analytic at the origin, and have power series expansions
a(x) = Zakxk, b(z) = Zﬁkxk, (4.23)
k=0 k=0
which are convergent on an interval |z| < 79,79 > 0. The Euler equation is the special

case of with the constants a, b.

Example 4.3 Find the solutions of the equation

3
L(y) = 2*y" + 37 + 2y =0, (4.24)

which has a regular singular point at the origin.

Solution:
Let us restrict our attention to x > 0. Since it is not an Euler equation, we can not
expect it to have a solution of the form z" there. However we try for a solution

o(z) =a" chxk =2"(co+ 1 + Fext 4o )
k=0
=cor" + " F e 4 (co #0), (4.25)

that is, 2" times a power series. We operate formally and see what conditions must be
satisfied by r and ¢y, ¢1, ¢o, - - - in order that this ¢ be a solution of Computing we
find that

¢ (x) = corz"t + e (r+ 1)a" +co(r +2)" ™ 4
¢"(x) = cor(r = Da" +er(r + Dra" +oo(r +2)(r + D)a” + -+,

and hence

22¢" (1) = cor(r — Da" +cr(r + Dra"™™ +co(r +2)(r + )" 2 4 - -+ |
;a:gb’(x) = ;com"r + ;cl(r + 1)t 4 gcz(r +2)z" 4
rp(x) = cox™ T+ e 4 cpr™ T 4 - -
Adding the above equations, we obtain

(ie) L(¢)(x) = 2?¢"(x) + z¢/ () + 2¢(x),

1@)(@) = [t =0+ 5o car” + { [t 0+ S04 ) e+ far
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+{[(r+2)(r+1)+;(r+2)] cQ+c1}x’”+2+---.

If we let

q(r):r(r—l)—i-g?":r(r—l—%),

this can be written as
L(¢)(x) = q(r)cox” + [q(r + V)er + cola”™™ + [q(r + 2)ea + i)™ + - -

= q(r)cox” + 2" Z[q(r + k)ey, + cpa]z”.
k=1

If ¢ is to satisfy L(¢)(x) = 0 all coefficients of the powers of x must vanish. Since we
assumed ¢, # 0 this implies

q(r) =0,
q(T—f-k‘)Ck +cp_1 =0, (k? = 1,2,---). (4.26)

The polynomial ¢ is called the indicial polynomial for [4.24] It is the coefficient of the
lowest power of = appearing in L(¢)(z), and from we see that its roots are the
only permissible values of r for which there are solutions of the form In our
example these roots are

1
7"1:0, 7"2:—5.

The second set of equations in delimits ¢y, ¢y, - - - in terms of co and r. If g(r+ k) #
0fork=1,2,---, then

q(r+ k), +cp—1 =0
q(r+k)ey = —cp1
Ck—1
q(r+k)’

(k=1,2,---,).

Cp = —

Substituting the £ values in the above equation, we obtain
Co

o=l 1>(1(7‘+ 1)
Lo CNa _ (1) (a
q(r+2) q(r+2)q(r+1)
(=1)%co
q(r+2)q(r+1)

and

_ (—1)*co
qr +k)g(r+k—1)---q(r+1)’

If’f‘l :0,

q(r1 +k)=qk)#0 for k=1,2,---,
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since the other root of ¢ is ry = —%. Similarly if r, = —%,

1
q(T2+k)ZQ(—§+k> 7é0 fOl’ ]{7:1,2,

Letting ¢y = 1 and » = r; = 0 we obtain, at least formally, a solution ¢, given by

() = cox® + 1o + cpx® + - -

¢($) =y + Z CrX
k=1
- (—1)*coak
xr) = cy+ ,
Pl = 0t 2 =) )
=~ (e
=1+ ) e =1),
2 qmath- gy 7Y
and letting ¢y = 1 and r = r, = —1 we obtain another solution
o (=1)*cq
Y a kg5 k=1 g5+ )
(—1)kl'k

~ k= Dalk—3)-q(d)

bo() = cox”2 + iz 2t it 4

" x_%oo (—1)Fa* R
W) =) - gy Y

These functions ¢, ¢, will be solutions provided the series converge on some interval
containing x = 0. Let us write the series for ¢, in the form

$i(x) = di().

Using the ratio test we obtain

dia(z) (=)t (—1)Fa* _ (=D(=)
de(z)  q(k+1)q(k)---q(1) q(k)q(k —1)---q(1)  q(k+1)
da(z)| |z 2]

DT
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as k — oo, provided |z| < oco. Thus the series defining ¢; is convergent for all finite x.
The same can be shown to hold for the series multiplying 272 in the expression for ¢s.
Thus ¢,, ¢, are solutions of for all z > 0.

To obtain solutions for x < 0 we note that all the above computations go through
if 2" is replaced everywhere by |z|", where

|z|" = erleelal, (4.27)
Thus two solutions of which are valid for all = # 0 are given by

k

S (D
N =D D) e

and
. o] (_1)kxk
9 T) = |\T 2 ]. 1 3 1
o) =l 14D D
Note:

1. The definition implies that |z|2 is the positive square root of |z].

2. The above example illustrate the general fact that an equation [4.22 with regular
singular point at the origin always has a solution ¢ of the form

b = |2 cxat, (4.28)
k=0

where r is a constant, and the series converges on the interval |z| < ro. More-
over r, and the constants ¢,, may be computed by substituting into the
differential equation.

4.3.1 Second order equation with regular singular points - the
general case

Theorem 4.3 Consider the equation

2%y + a(x)zy + b(z)y = 0,

where a, b have convergent power series expansions for
|z| < 7o, ro > 0.
Let r1,7m9(Re r1 > Re r3) be the roots of the indicial polynomial
q(r) =r(r—1) +a(0)r + b(0).

For 0 < |x| < 1o there is a solution ¢, of the form

oo

oi(2) = e Y et (e =1),

k=0
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where the series converges for |x| < ro. If ri — 1o is not gero or a positive integer, there is
a second solution ¢, for 0 < |x| < ro of the form

[e.9]

¢2($) = |x|r2 Zékxk’ (60 = 1)7

k=0

where the series converges for |z| < 1.
The coefficients cx, ¢, can be obtained by substitution of the solutions into the differ-
ential equation.

Proof:
Suppose we have a solution ¢ of the form

o(z) =" Z cpa®
k=0
S, (429
k=0
for the equation
2%y + a(x)zy + b(z)y = 0, (4.30)
where
a(x) = Z apz®,  b(x) = Zﬂkxk, (4.31)
k=0 k=0

for || < ro. Then
¢ (x) = Z cr(k +r)zitrt
k=0
="t Z cr(k +r)a”,
k=0

¢"(z) = Z cr(k 4+ 1)k +r — 1)ahr=2

k=0

= x”_Qch(k+T)(l€ +r — 1)z,
k

00
=0

and hence
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k
where ), = Z i Br—j»
=0

=" (Z ak(:c)k> (Z cr(k + r)a:k>
=z Z ay(z)"

k
where a;, = Z(j + T)Cjak—j:
=0
2@ (x) = 2* |2" 2 Z ce(k+r)k+r— 1)xk]

k=0

=" ick(k+r)(k+r — 1):5"”] .

LE=0

Thus
L(¢)(x) = 2?¢" + a(x)zd’ + b(x)d

=1 [i ek +1r)(k+r—1)ak

k=0

+ " Z ap(x)* + 2" Z Ba®
k=0 k=0

=a" [(k"‘T)(k?*‘r—l)Ck*"@k—i-Bk} ",
=0

and we must have
[ = [ ) = et ait ] =0, (k=0,1,2,---).

Using the definitions of &y, B, we can write the bracket [ ]k as

k k
[ =+ k+r—De+ Y (i +ra+ Y by
=0 J=0
k-1
= (k+r)(k+7r—1)c, + cip(k +r)ag + cxfo + Z [(J +7r)ak—j + Be—jl ¢
=0

k k k
=(k+r)k+r—1)c + Z cj + ch(j +r)oy_; + chﬁk—j
=0 =0 =0

k-1

= (k+7)(k+7—Dep + cx(k +r)ag + crfo + O [+ r)awy + Byl ¢5.
=0
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For k = 0 we must have
r(r—1) +rag+ o =0, (4.32)
since ¢y # 0. The second degree polynomial ¢ given by
q(r) =r(r—1) +rag+ by

is called the indicial polynomial for [4.30, and the only admissible values of r are the
roots of q. We see that

[ }kIQ(T‘i‘k)Ck—l-dk :07 (k: 1727”')7 (433)
where
k—
Z (J+r)ag—j+ Br—jle;,  (B=1,2,---). (4.34)
7=0
Note that dj, is a linear combination of ¢y, ¢y, - - - , ¢,—1 with coefficients involving the

known functions a,b and r. Leaving r and ¢, indeterminate for the moment we solve
the equations [4.33], successively in terms of ¢, and r. The solutions we denote by
Cy(r), and the corresponding dj, by Dj(r). Put k = 1 in the equation [4.34}, we get

0
Dy(r) =dy =Y [+ 7)o+ Bijl¢
]:

= (04 7)a1—0 + Bi-oCo
Di(r) = (ray + Bi)co, (4.35)

q(r +1)Ci(r) + Di(r) = 0,

_ Du(r)
Ci(r) = D (4.36)
Put k = 2, we get
1
DQ(T) =dy = Z [(] + T)Oég j+ 62 ]] Cj 4.37)
=0
q(r +2)Ca(r) + Do(r) = 0,
_ Du(r)
and in general
k-1
Dy(r) = ) (G +r)auw—; + Bl ¢, (4.39)
=0
_ D) 1.
Ck@") - Q(T _|_ k)? (k - 17 27 ) (4-40)



The C}, thus determined are rational functions of r (quotients of polynomials), and the
only points where they cease to exist are the points r for which ¢(r + k) = 0 for some

k =1,2,---. Only two such possible points exist. Let us define ¢ by
O(x,r) =cox” + 2" Z Cr(r)a. (4.41)
k=1

If the series in|4.41| converges for 0 < x < r(, then clearly
L(®)(z,7) = coq(r)x". (4.42)

If the ¢ given by[4.29]is a solution of then r must be a root of the indicial polyno-
mial ¢, and the ¢, (k > 1) are determined uniquely in terms of r and ¢, to be the Cj(r)
of [4.40] provided ¢(r + k) # 0 for k =1,2,---.

Conversely if 7 is a root of ¢, and if the C(r) can be determined, then the function
¢ given by ¢(z) = ®(z,r) is a solution of for any choice of ¢y, provided the series
in can be shown to be convergent.

Let r1, ry be the two roots of ¢, and suppose we have labeled them so that Re vy =
Re ry. Then q(r; + k) #0forany k =1,2,---.

Thus Cj(r) exists for all k = 1,2,---, and letting ¢, = Cy(r1) = 1 we see that the
function ¢, given by

$1(x) =™ Y Cr(r)z*  (Co(r) = 1), (4.43)

is a solution of |4.30], provided the series is convergent.
If v, is a root of ¢ distinct from r;, and ¢(ro + k) # 0 for k = 1,2, -- -, then clearly
Ck(ry) is defined for £ = 1,2, - -, and the function ¢, given by

do(w) =2y Cilra)a®  (Colry) = 1), (4.44)
k=0

is another solution of 4.30} provided the series is convergent. The condition
q(ro +k)#0 for k=1,2,---

is the same as
7’17&7'24-]{ for /{:1,2,"',

or r; — 79 is not a positive integer.
As we have seen in [4.43] 4.44} the coefficients ¢y, ¢, appearing in the solutions
¢1, @2 of the above theorem are given by

Ck:Ck(Tl), Ek:Ck(Tg) for k=1,27 ,

where the C(r), (k = 1,2,---), are the solutions of the equations with
C()(T’ ) =1.

In the case of the Euler equation, that the calculations made for x > 0 remain valid
for # < 0 provided 2" is replaced every where by |z|".

If r; —ry is either zero or a positive integer we shall say that we have an exceptional
case. The Euler equation shows that if r; = 7, we must expect solutions involving log z.
In the case when r; — ry is a positive integer log x may appear.
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4.3.2 The exceptional cases
Theorem 4.4 Consider the equation

2%y + a(z)xy + b(z)y = 0,

where a and b have power series expansions which are convergent for |x| < rq, ro > 0. Let
r1,79 (Re 1 > Re ry be the roots of the indicial polynomial

q(r) =r(r—1) 4 a(0)r + b(0).
If r1 = ry, there are two linearly independent solutions ¢y, ¢, for 0 < |x| < rq of the form

$1(x) = |2 01(2), d2(2) = [2|" T oa(x) + (log|z])¢a(x),

where o1, 0o have power series expansions which are convergent for |z| < ry and o,(0) #
0.

If r1 — ry is a positive integer, then there are two linearly independent solutions ¢, and
¢o for 0 < |z| < ro of the form

d1(2) = |20 (2), dalz) = |e?o2(x) + c(log [2])u (),
where o1, 09 have power series expansions which are convergent for

x| <7, 01(0) #0, 02(0) #0,
and c is a constant. It may happen that ¢ = 0.

Proof:
We divide the exceptional cases into two groups according as the root ry,7y(Re 73 >
Rery) of the indicial polynomial satisfy

(Z) THT = T9

(17) 7 — 79 is a positive integer.

We try to find solutions for 0 < 2 < ry. We are going to work in a purely formal way
in order to discover the form that the solutions should take. For such z we have from

(.41} [4.42

L((D)(ZL’, T) = COQ(T)'IT’ (445)
where ® is given by
O(x,r) =cox” + 2" Z Cr(r)a. (4.46)
k=1

The Cy(r) are determined recursively by the formulas

Co(r) = co # 0,
q(r + k)Cy(r) = —Dy(r), (4.47)
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T
L

Di(r) = ) [0 +7r)ak—j+ Byl Ci(r),  (k=1,2,--);

.
I
o

see[d.39} [4.40,

In case (i) we have
Q(Tl) = Oa q,<rl) = 07
and this suggest formally differentiating with respect to . We obtain

s =1 (5 @

= colq'(r) + (log z)q(r)]z",
and we see that if r = r; = 79, ¢o = 1, then

o) = G2 2.)

will yield a solution of our equation, provided the series involved converge. Computing
formally from [4.46|we find

¢o(x) —x”ZCk r)z” + (logz)x ZCk )T

k=0

=" 3" Chlr)a* + (log 2)én (<),

k=0

where ¢, is the solution already obtained:
" ZCk(rl)xk, (Co(r) =1).
k=0

Note that C} (r) exists for all (k = 0,1,2,---), since C}, is a rational function of » whose
denominator is not zero at r = ry. Also Cy(r) = 1 implies that C{(r,) = 0, and thus the
series multiplying =" in ¢, starts with the first power of z.

Let us now turn to the case (ii), and suppose that r; = r, + m, where m is a positive
integer. If ¢, is given,

Ci(ra), -+ Cm1(r2)
all exist as finite numbers, but since
q(r +m)Cpn(r) = =D (r), (4.48)
we run into trouble in trying to compute C,,(r5). Now
q(r) = (r—ri)(r —ra),
and hence

q(r+m) = (r—ro)(r+m—ry).
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If D,,(r) also has r — ry as a factor (i.e.,D,,(ry) = 0) this would cancel the same factor
in ¢(r +m), and would give C,,(r2) as a finite number. Then

Cmt1(r2), Crga(ra), - - -

all exist. In this rather special situation we will have a solution ¢, of the form

oo

o) = 2" ZCk(m)xk, (Co(rg) =1).

k=0
We can always arrange it so that D,,(r5) = 0 by choosing
Co(r)=r—mry
From |4.47|, we see that Dy(r) is linear homogeneous in
Co(r), -+, Cr_1(r),

and hence Dy (r) has ¢y(r) = r—r9 as a factor. Thus C,,,(r2) will exist as a finite number.
Letting

U(z,r)=a" Y Cy(r)z*, (Co(r) =r—ry), (4.49)
k=0

we find formally that
L(U)(z,r) = (r —r2)q(r)x". (4.50)
Putting » = r, we obtain formally a solution v’ given by
P(x) = V(z,19).

However Cy(ry) = Ci(ry) = -+ = Cp_1(r2) = 0. Thus the series for ¢ actually starts
with the m-th power of z, and hence v has the form

b(x) =2 "o (z) = 2" o (2),

where o is some power series. It is not difficult to see that 1) is just a constant multiple
of the solution ¢, already obtained.

To get a solution really associated with r, we differentiate [4.47| with respect to r,
obtaining

O L)) = L (%—\f) (x,7)

= q(r)a” + (r —r2) [¢'(r) + (log )q(r)] 2"
Now letting » = r, we find that the ¢, given by

6a(2) = 5 (2.r)

106



is a solution, provided the series involved are convergent. It has the form

Pa() —x”ZCk ro)z* + (log x)z ZC"f ro)z”,

k=0

where Cy(r) = r — ry. Since
Co(rg) = -+ = Cri(r2) =0,

we may write this as

Go(x) = 2™ Z Ci.(ro)x" + c(log 2) ¢ (z),

k=0

where ¢ = C,(12).
The method used in this section to obtain solutions is called the Frobenius method.
All the series obtained converge for |z| < ry, and the ¢, computed formally will be a
solution in both the cases (i) and (ii). This requires justifying the differentiating of the
various series term by term with respect to r, and this can be done.

Solutions for x < 0 can be obtained by replacing

™, 2™, logx
everywhere by

=™, 2], log ]

respectively.

Let us sum up

1. We have defined the significance of the Frobenius method.

2. We have discussed the method of finding exceptional regular singular points
using Frobenius method.

3. We have discussed the linear homogeneous equation with a regular singular
point at the origin always having a solution.

4. We have discussed the general case for a second-order equation with regular
singular points.

5. Finally, we figure out some illustrative examples.
Check your progress

3. For the differential equation z%y” — 5y’ + 322y = 0,
(a) x = 1, regular singular point (b) x = 0, not regular singular point
(c) z = 1, not regular singular point (d) = = 0, regular singular point

4. For the differential equation z?y” + (sinz)y’ + (cosz)y = 0, which of the following
statement is true?
(a) z = 0, regular (b) x =1, regular
(c) x =0, irregular (d) z =1, irregular
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4.4 The Bessel equation

In this section, you will learn about the standard forms and notations of the Bessel’s
equation and functions. The Bessel differential equation is the linear second order
ordinary differential equation. The solutions to the Bessel differential equation define
the Bessel’s functions .J,,(xz) and Y,,(z) which has a regular singularity at 0 (zero) and
an irregular singularity at co.

If o is a constant, Re o = 0, the Bessel equation of order « is the equation

L(y) = 2" + 2y’ + (° — &)y = 0. (4.51)
This has the form
2y + a(z)y + b(z)y =0, (4.52)

with a(z) = z,b(z) = 2* — o?. Since a, b are analytic at = = 0, the Bessel equation has
the origin as a regular singular point. The indicial polynomial ¢ is given by

qr)=r(r—1)+r—ao*=r*—a?
whose 2 roots r, ry are
" =Q,Tg = —Q.
4.4.1 First kind of Bessel equation of order zero:

Let us consider the case o = 0. Since the roots are both equal to zero in this case there
are two solutions ¢, ¢, of the form

¢1(z)
Pa()

where o, 0, have power series expansion, which converge for all finite x. Let us
compute oy, 09. Let

01 (.%’),
roy(7) + (log x)¢1 (),

L(y) — $2y” _'_$y/ —0—$2y,

and suppose

oo

o1(x) = chxk, (co #0).

k=0

We find

ol (x) = ¢ (x) = Y exka,
k=1
ol(x) = ¢{(x) = > cxh(k — 1)a*2,
k=2
zoy(z) = Z crka® = ey + Z crka®,
k=1 k=2
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2ol (z) = chk(k —1)z"

=2
oy (z) = Z cprtt? = Z Ch_oT
k=0 P
We obtain
() =3 ke + 2D 1og ol ()

k=1

> 2

= btk Dt = 204 204 0) + Qoo o)
Thus

L(oy)(z) = c1(x +Z{ k— 1)+ klep + cp_o}a® = 0.
We see that
C1 = 0

(k= 1) + kler +cxa =0, (k=2,3,---).

The second set of equations is the same as

Cr—2

N (k=2,3,---).
The choice ¢y = 1 implies
1 Co 1
QT T AT T T e
and in general
Com = (=1 B Gl (m=1,2,---).

22.42...(2m)2  22m(m!)2’

Since ¢; = 0 we have
03205:"':0.

Thus o, contains only even powers of x, and we obtain
B e (_1)mx2m
o(z) = Z 22m ()2’

where as usual 0! = 1, and 2° = 1. The function defined by this series is called the
Bessel function of zero order of the first kind and is denoted by J,. Thus

(3

It is easily checked by the ratio test that this series indeed converges for all finite .

o

m=0
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4.4.2 Second kind of Bessel equation of order zero:

We now determine a second solution ¢, for the Bessel equation of order zero. Letting
¢1 = Jy this solution has the form,

[e.9]

$a(z) =Y exa® + (logw)gn(x),  (co =0).

k=0
We obtain
/ — — 1 /
$h(x) =) epkat ™ + —h (z) + ¢ (x)(log x),
k=1

4a) = 3 ekl — 2 = on(a) 3 ) + 2ekto) + o) log)

Thus
L(¢o)(x) = 22 (x) + 2y (x) + 2 pa()

= x4 2%co1 + Z (l{:Qck + Ck_2> 2%+ 22¢) (2) + (log z)L(¢y) (),
k=3

and since L(¢;)(z) = 0, we have

a1 + 2%cx” + Z (kQCk + Ck—Q) ot = —2z¢) ()
k=3
B 0 (_1)m2m$2m—1
=-2v) 22m (1 1)2
m=1
5 > (—1)m2ma?™
B 2m (g 1)2
= 22m(ml)

Hence equating the coefficients of x and z?, we get ¢; = 0,

—2(-1)2 4
m:1:»22c2:ﬁ:1—1:1
m=2=3%3+c, =0

33 +0=0
3%c3 =0
= c3 =0,

and we see that since the series on the right has only even powers of z,
C1:C5:C7:"‘:O.

The recursion relation for the other coefficient is

(=)™

gy (MRS

(2m)202m + Com_o =
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We have

=1 = 22 _
m=1= 02+co—20(1!)2
2%¢ —|—O—1
2T
1
C2—§.
202 (1)%-2
=2= 224 + ¢ —22<2!)2
2 )
4C4+§ —2.22
1 (1)
2
Ya=5-99
11 (1)
C —_—— —
1T 22 T 9.2

ot
“AT T 2

1] 1 1 1 1
%_6[@22O+§)+@22O+§”
:;[14_14_1]
2. 262" 23

B 1 Lokl
C22(12.22. 32) 2 3]

It can be shown by induction that

and

an11+1+1+ . (m=1,2,--)
m = o 15 — — “ e J— , m = s Lyttt ).
m = a2 [T T2 7 3 m

Then

chx + (log z)¢1 (),
k=0

o0

by =3 % <1 byt i) (5)™ + (ogm)en().

The solution thus determined is called a Bessel function of zero order of the second
kind, and is denoted by K. Hence

i m(1+1+;+ +%> (§>2m+(logI>Jo<x)-

m=1
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4.4.3 Bessel function of order «:

Now we compute solutions for the Bessel equation of order a, where o # 0, and
Rea>0:

L(y) = 2%y + zy + (2 — o)y = 0. (4.53)
This is of the form
2%y + a(x)y + b(z)y = 0. (4.54)
As before we restrict attention to the case x > 0. The indicial polynomial is given by

qry=r(r—1)+r+a*=0
2 —r4+r—a?*=0

r=+a.
The roots of the indicial polynomial equation are
=0, 'y = —Q.

First we determine a solution corresponding to the root r; = a.. The solution ¢, has
the form

o1(x) = 2™ Z cpx®,

and
¢1(23) _ chwlﬁra
k=0
= cox® + ¢z + Z cprtte
k=2
P (z) = Z en(k + o)k et
k=0

=co(@)r* ' + (1 + )™ + Z cn(k + o)xkter!
k=2

112



2} (1) = co(a)z® + cr(1+ )z + ) ek + a)atte
k=2

1(z) = Z cr(k+a)(k+a — 1)z"re2

k=0

=co(@)(a — 1)z 2 + ¢ (a+ 1)(a)z™ ' + Z ek +a)(k+a —1)zFte?

229 (z) = co(a)(a — Da® + ¢ (a+ 1) (o)™ + Z cr(k 4+ a)(k +a — 1)z"

D
cox® + Tt 4 E cprtte

k=2

(2% — a?)p1(z) = 2 [Z Cp_ox™ T

k=2

o0 o0
_ Z Cp_grtTat2 _ a2eor® — ozt — o? Z ez,
k=2

k=2

We find that

L(¢1)(x) =0 cox® + [(a+1)* = @’ era®™ + 2% {[(a+k)* — 0®)] e + ez }a* = 0.

Thus we have

izt 2a+1] =0
c [F + 2ka+ ¢p—z] =0

Cr [k2 + 2ko¢} = —Ci_9
Cl—2

=_ k2 =2,3,---). :
=1 o (k=23 (4.56)
We find
Co Co
:2 = — = —
K= = e T TPt a)
C1
ST TR 3)a
C2
k=4 =2
T TR @
82+ a).22(1+«)
22 (a+2)(a+ 1)
C1
ST TR 5Qa
Cq
k:6 = —-——
C T TR 1 2(6)a
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6(6+ 20).2-. (20 (a + 2)(a + 1)
6(2).2-.2)(a +3)(a+2)(a+ 1)
T 23+ 3)(a+2)(a+1)

This implies that
01263205:"':0.
In general,

_ (=1)"co
22m(m!)(a+1)(a+2)(a+3)---(a+m)

Com

Our solution thus becomes

_ o « — (_1)mx2m
D1(w) = coz” + o m; 2 (o + (o + 2)(a+3) - (atm) 4.57)
For a = 0, ¢y = 1, this reduces to Jy(z). It is usual to choose
__ 1 (4.58)
= %l(a+1) '
where I' is the gamma function defined by
['(z) = / e 2" ldr, (Rez >0).
0
It is readily seen that
T(z+1) =2T'(2). (4.59)

Indeed, integrating by parts, we have:

T
I'(z+1) = lim e "x* dx
T—o0 0
T T
= lim [—xzex —1—2/ ex:cZ1dx]
T—o0 0 0
T
=z lim e Tt dr
T—o0 0
= 2I'(2),

since T?e~T — 0 as T — oo. Also, since



if z is a positive integer n,
Fn+1)=nl

Thus the gamma function is an extension of the factorial function to numbers which
are not integers.

The relation[4.59| can be used to define I'(z) for z such that Re z < 0, provided z is
not a negative integer. To see this suppose N is the positive integer such that

—N < Rez<—N +1.
Then Re (2 + N) > 0, and we can define I'(z) in terms of I'(z + N) by

I'(z+ N)
2(z+1)---(z+N—=1)

['(z) = (Re z < 0),
provided z # —N + 1. The gamma function is not defined at 0, —1, -2, - - -
Returning to [4.57) if we use the ¢, given by we obtain a solution of the Bessel

equation of order a which is denoted by J,, and is called the Bessel function of order
a of the first kind:

T = (5)° > (m!)FE; 1+)n;@ ) @)m (e a = 0). (4.60)

Notice that this formula for J, reduces to J, when « = 0, since I'(m + 1) = ml!.
There are now two cases according as r; —ry = o — (—a) = 2« is a positive integer
or not. If 2« is not a positive integer, there is another solution ¢, of the form

o0

Go(r) =277 Z cpa®.

k=0

We find that our calculations for the root r; = « carry over provided only that we
replace o by —«a everywhere. Thus

T =(3) ZO mgr&% ) ;)"

m=

gives a second solution in case 2« is not a positive integer.

Since I'(m — a + 1) exists for m = 0, 1,2 provided « is not a positive integer, we
see that J_,, exists in this case, even if r; — ro = 2« is a positive integer. Thus, if « is
not zero or a positive integer, J, and J_, form a basis for the solutions of the Bessel
equation of order « for x > 0.

The only remaining case is that for which « is a positive integer, say o = n. There
is a solution ¢, of the form

o0

¢po(x) =2a7" Z cr® + c(log x)J,(z).

k=0

Now, we find that
L(¢a)(x) = ¢ () + ¢ (2) + (2° — n?)ga(z) = 0.
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First we determine a solution corresponding to the root & = n. From the solution
¢ has the form

oo
=z ° g ek,
k=0

= x_”chxk,
k=0
Po(x) = chxk_”, (co #0).
k=0
Then
Go(z) = Z et
k=0
=cor " + cpxl” —l—chx -

h(z) = ch(k; —n)gh !

k=0

=co(—n)r "+ (1 —n)z™" + Z cr(k —n)zh !
k=2
zdy(x) = co(—n)x ™" + (1 —n)x' ™ + Z cr(k —n)aFm
k=2
:ch(k—n n 1)35’“" 2
k=0
= co(—n)(—n — Da " 2+ ¢;(1 — n)(—n)z™"" 1—|—ch —n)
(k —n— 1) k—n—2
“¢5(2) (=n)(=n—1)z7" + (1 —n)(— ln—i-ZCk (k—n—1)
k=2
(2% — n?)gy(x) = 2° [Z ck_gxk_”] —n? [com_” + ezt Z cpatm

k=2 k=2

= ch_ k=nt2 _ p2coa™ —nleizt ™" —n chx -,
k=2
Thus
L(pa(x)) = co(—n)(—n — 1)z + ¢1(1 — n) a' "—i—ch k—n—1)2"
k=2

116



+co(—=n)z™" + 1 (1 —n)a' ™" + Z cr(k —n)z*™ + Z Cp_oxh T2
k=2 k=2

—nPcor™" — n’cix' " — n? Z e " 4 2cxJ! (x) + c(log x) L(J,)(z) = 0,
k=2
=cox " [-n(-n—1)—n—n*] +cz' " [-n(l —n) —n+1—n’]

S N S PSS B

+ 2;xJ,’1(x) + c(log z)L(J,)(z) = 0,

=coxr " [—n2 +n+n?— n} + ezt [—n2 —n—n+1+ n2]

+§: [ck [k:Q—kn—k—kn%—k—n—nQ—l—n%—nQ} +ck_2}

xk_k": : 2cxJ! (x) + c(log x) L(J,)(z) = 0

=cor "+ [(1 —n)* —n?leyzt " " f:{[(k‘ —n)? —n%ep + cp_o )’
+ 2cxJ! (x) + c¢(log(z))L(J,)(x) = 0, -

and since L(.J,,)(x) = 0, we have, on multiplying by z",

(1—2n)cz + i[k:(k —2n)cp + cp_g]z® = —2¢ i(Zm + 1) dgp ™, (4.61)
k=2 m=0
Here we have put
Jn(x) = i dopx®™ ™, (4.62)
m=0
and hence
doyy = Sl (4.63)

o 22minp)(m 4 )l

The series on the right side of begins with z?", and since n is a positive integer,
we have ¢; = 0. Further, if n > 1,

k(k—2n)cg +cr2=0, (k=2,3,...,2n—1).
Equating the coefficients of ", 2'~" and 2*~",we get

izt ™" [1—2n] =0
=c; = 0. (4.64)
C [k:2 — 2kn + ck_2] =0
Cr, [k‘Z — 2kn] = —Cp_o

Cl—2

Cr = —
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Then

Co Co
k = 2 =
ST T 2 T 20 1)
C1
k=3 — =0
S R EI Y5 P
Ca
—4 - _
F=d a= g, e
- 8(n—2)-22(n—1)
2. 2h(n—2)(n—1)
1
ST TR s@m
Cq
k=6 =
T o6 — 62

Co

6(2n —6)-24- (2)(n—2)(n — 1)’

Co

S 6(2)-24-(2Dh(n —3)(n—2)(n —1)’

Co

T 2320 (n—3)(n—2)(n—1)

Finally, we get
¢ =c3=0¢5=""+=Cp1=0.

In general,

21— 2)(n—3) (n—j)

Comparing the coefficients of x?" in we obtain:

C

Copn—1 — —QCndO = —m

On the other hand from it follows that
Co
22n=1(n — 1)l(n — 1)V

Con—2 =

and therefore

Co

LTy T

- 1). (4.66)

(4.67)

Since the series on the right side of contains only even powers of x the same must

be true of the series on the left side of |4.61} and this implies

Cong1 = Copyg = -+ = 0.
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The coefficient ¢y, is undetermined, but the remaining coefficients
Con+3; Contl, -
are obtained from the equations:
2m(2n + 2m)cantom + Contom—s = —2¢(n + 2m)dy,, (m=1,2,---).

For m = 1 we have

Cd1 1 + 1 Con
Conyo = ——— — .
ant? 2 n+1) 4(n+1)

We now choose ¢y, so that

Con, _Cdg 1+1+ +]_
4n+1) 2 2 n)’

since 4(n + 1)dy = —dy,

LY S
n =T 2 n)

With the choice of ¢y, we have
Cd2 1 1
o= —— (14144 ——].
Con+2 5 ( + 14 9 + + n+ 1)

For m = 2 we obtain

Cd4 1 i 1 Con+2
Conya = —— | = — .
antd 2 \2 n+2) 22.2.(n+2)

Since 2% -2 - (n + 2)dy = —dy,

Con+t2 cdy 1 1
S e ——— N T
2.2 (nt2) 2 ( * +2+n—|—1)’

and therefore

cdy 1 1 1
02n+4:_7 1+§+1+§++n—+2 .

It can be shown by induction that

cdam 1 1 1 1
- _ 14+ = 4.0 = 14+ = 4-... —1.2....).
Con+2m > {(+2+ +m)+(+2+ +n—|—m)}’(m ,2,000)

Finally, we obtain for our solution ¢, the function given by

n—1 2]

da(x) = cor " +x2 25 () (n—1)(n—2)(n—3) - (n—J)
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2 2
¢ w— 1 1 1 1

_ Ao |1+ =4+ + — 14+ 24 ... n+2m 1 J,,
2m§_1 2 l( +tg+ +m>+( +tg+ —l—n_i_m)}x + c(log x) J,(z),

where ¢, and c are constants related by [4.67|and d,, is given by When ¢ = 1 the
resulting function ¢ is often denoted by K. In this case

= 207D (p — 1)1,
and therefore we may write
(n — j - 1) 27 11 1 1 T\™
=G ST G 3 (e ) ) -
(@) = 2 IR G IRE \

16)

2

+ (logz )J ( )
This formula reduces to the one for K,(z) when n = 0, provided we interpret the first
two sums on the right as zero in this case. The function K, is called a Bessel function

of order n of the second kind.
Let us sum up

n 1

M

j=0

ﬁMg
—
+
DO |

+
+
| —
N—
+
/;\
+
DO |

+
_l_
3
4|~
3
N——
N
N | &
%
3

1. We have discussed the Bessel’s equation of order zero and «.

2. We have discussed the gamma function and the relation between the gamma and
exponential functions.

Check your progress
5. The value of z/2J; j5(x) is

1
V2 e ) V2 © \/;

1
sinz  (d) \/;

(a) COS T COS T
r'(3) I'(3) r'(2) r(2)
6. Find out the Bessel’s Equation
@) 2%y + xy + L (2* — a*)y=0 (b) v + zy + (2% — a®)y=0
(© 2%" + xy + (2* — a*)y=0 (d) None of these
Summary

e A power series represents a continuous function within its interval of conver-
gence.

e A power series can be differentiated term wise within its interval of convergence.

e The theory of ordinary differential equations for the complex plane are classified
into ordinary points, at which the equation’s coefficients are analytic functions,
and singular points at which some coefficient has a singularity.
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Any singular point which is not regular is called irregular singular point.

The singularities of second order linear ODEs have been divided into two kinds,
regular singularities and irregular singularities.

Frobenius Method: Solving around singular points.

When the Frobenius series is used to solve the differential equation then the
parameter must be chosen so that when the series is substituted into the differ-
ential equation the coefficient of the smallest power of x is zero. This is called
the indicial equation.

An indicial equation, also called a characteristic equation, is a recurrence equa-
tion obtained during application of the Frobenius method of solving a second
order ordinary differential equation.

Bessel functions are solutions to Bessel’s differential equation, commonly arising
in problems with cylindrical or spherical symmetry in physics and engineering.

Here, for an arbitrary complex number «, the order of the Bessel function. Al-
though « and —« produce the same differential equation for real «, it is conven-
tional to define different Bessel functions for these two values in such a way that
the Bessel functions are mostly smooth functions of a.

The most general solution of Bessel’s equation is, y(z) = AJ,(z) + BJ_,(x),
where A and B are arbitrary constants

Glossary

Ordinary point: A point z = z; is an ordinary point of the second-order linear
ordinary differential equation y" + p(z)y + q(z) = g(x), if p(x), ¢(x) and g(x) are
all analytic at a point x.

Singular point: Points that are not ordinary are called singular points of differen-
tial equation.

Irregular singular point: Any singular point which is not regular is called irregular
singular point.

Radius of convergence of the infinite series: The radius of convergence of the in-
finite series is the distance to the singularity of the differential equation nearest
to the singularity z = 0.

Frobenius method: It is named after Ferdinand Georg Frobenius and is a specific
technique used to find an infinite series solution for a second order ordinary
differential equation.

Bessel functions: These were first defined by the mathematician Daniel Bernoulli
and then generalized by Friedrich Bessel are the canonical solutions y(x) of
Bessel’s differential equation.

Self-assesment questions
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1. Find the general solution for the Euler method, 2%y” — 32y’ + 4y = 0
(@) ¢(z) = cylnz + crx? (b) ¢(x) = xcylne™2 + crxlnw
(© ¢(x) = c12? + cux®inz (d) ¢(x) = (c1 + c2)lnx

2. The solution of the differential equation z%y” — 3zy’ + 3y = 0 for x > 0 is given
by
(@) ¢(z) = cra™" + e’ (b) ¢(x) = 1w + o™
(©) ¢(v) = 1o + cp2® (d) ¢(x) = 12 + cpz™?

3. The indicial polynomial of the equation xz%y” + (z? — 3z)y’ + 3y = 0 is
@r?=0 M®r?-3r+3=0 @Wr—-4r+3=0 (Dr?—-4=0.

4. Find the value of the Bessel function of order « of the first kind,
@) Ja(®) = (5)* X srtmtarn (81" 0) Ja@) = (5)* X e (3

m= m=

@ Jofx) = (3" & il (51" @ Ja(e) = (5)7 X nllig (5

5. Show that /3
1 2
x2J1(r) = === sinz.
: L)
6. Show that K((z) = —K;(x).
EXERCISES

—

. Consider the equation

/" 1 / ]‘
y +-y ——y=0,
T x

for z > 0.

(a) Show that there is a solution of the form z", where r is a constant.

(b) Find two linearly independent solutions for = > 0, and prove that they are
linearly independent.

(c) Find the two solutions ¢, ¢, satisfying

2. Find two linearly independent solutions of the equation
Bz —1)*"+ (92 —3)y =9y =0
for z > 1.

3. The equation ¢’ + a(x)y = 0 has for a solution

é(x) = exp {— /x:a(t)dt].
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(Here let a be continuous on an interval I containing (). This suggests trying to
find a solution of
Ly) =y" + ar(x)y’ + az(2)y = 0

of the form

b(x) = exp [ / :p<t>dt] |

where p is a function to be determined. Show that ¢ is a solution of L(y) = 0 if,
and only if, p satisfies the first order non-linear equation

/

Y =—y* —ai(z)y — as(z)
(Remark: This last equation is called a Riccati equation.)
4. Find all solutions of the following equations for = > 0:

(@ 2" + 22y — 6y =0

(b) 22%" + 2y —y=0

(@ 2%y +ay —dy=u

(d) 2%y" — 5ay + 9y = 2°

(e) z%y" +22%y" —ay +y=0.

5. Find all solutions of the following equations for|z| > 0:

(@) 22y +ay +4y =1

(b) 2%y" — 3zy’ +5y =0

(© 2%y — (2+i)xy + 3iy =0
(d) 22y + oy —day =2 .

6. Let ¢ be a solution for x > 0 of the Euler equation
22" + axy' + by = 0,
where a, b are constants. Let ¢(t) = ¢(et).

(a) Show that ¢ satisfies the equation
V(1) + (a — 1)Y(t) + bi(t) = 0.

(b) Compute the characteristic polynomial of the equation satisfied by v, and
compare it with the indicial polynomial of the given Euler equation.

(c) Show that ¢(x) = ¢(log ).
(d) Using (a), (b), (¢), and similar facts for = < 0 prove Theorem 4.1.

7. Find the singular points of the following equations, and determine those which
are regular singular points:

(a) x2y// + (ZL‘ + x2)y/ —y = 0
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(b) 3z%y" + 2%/ + 22y = 0
(¢) 2%y — 5y + 322y =0
@ 2y’ +4y=0
(e) (1—a?)y" —2xy +2y=0
6 (+z2-2%"+3x+2)y+(z—1)y=0
8. Compute the indicial polynomials, and their roots, for the following equations:
@ 22y +(x+2¥)y —y=0
() 22y + 2y + (22— 3)y =0
9. (a) Show that —1 and 1 are regular singular points for the Legendre equation
(1—2*)y" — 22y + a(a+ 1)y = 0.

(b) Find the indicial polynomial, and its roots, corresponding to the point x = 1.

10. Find all solutions ¢ of the form

= |z|" cha: (|z] > 0),

for the following equations:

(@) 32%y" + 52y + 32y =0
(b) 2?y" +xy' + (2 — })y = 0. Test each of the series involved for convergence.
11. The equation
zy" + (1 =)y +ay =0,

where « is a constant, is called the Laguerre equation.

(a) Show that this equation has a regular singular point at = = 0.
(b) Compute the indicial polynomial and its roots.
(c¢) Find a solution ¢ of the form
¢(z) = 2" 322, ez,
(d) Show that if &« = n, a non-negative integer, there is a polynomial solution

of degree n.

12. Consider the following three equations near x = 0:
() 22%" + (bx + 22y + (22 = 2)y =0
(i) 4a*y” — dwe™y' + 3(cosx)y =0
(i) (1 —2*)2*y" +3(z+2*)y' +y =0

(a) Compute the roots r1,ry of the indicial equation for each relative to
z = 0.
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13.

14.

15.

16.

17.

(b) Describe (do not compute) the nature of two linearly independent so-
lutions of each equation near z = 0. Using the notation of Theorem
4.4, determine the first non-zero coefficient in oy(x) if 11 = ry, and
determine whether ¢ = 0 in case r; — ry, is a positive integer.

Consider the equation

x2y”+xy'+(:v2—oz2)y:0,

where « is a non-negative constant.

(a) Compute the indicial polynomial and its two roots.

(b) Discuss the nature of the solutions near the origin. Consider all cases care-
fully. Do not compute the solutions.

Obtain two linearly independent solutions of the following equations which are
valid near = = 0:

@ 2%y +3zy +(1+2)y=0
(b) 2%y + 22%y —2y =0
(© 2% +5zy + (3 —23)y =0

Consider the equation
vy +a(z)y =0,

where o
a(x) = Z oa®,
k=0
and the series converges for |z| < r¢,ro > 0.
(a) Show formally that there is a solution ¢ of the form
o(z) = xTchxk, (co=1),
k=0

where r + oy = 0, and = > 0.

(b) Prove that the series obtained converges for |z| < 7.

Prove that the series defining .J, and K converge for |z| < oc.

Suppose ¢ is any solution of 22y” +zy'+ 12y = 0 for > 0, and let ¢/(z) = z2(x),
Show that ¢ satisfies the equation

1
2y 4 (@ + )y =0

for > 0.
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18.

19.

20.

21.

22.

Show that .J, has an infinity of positive zeros. (Hint: If 1y(z) = x2Jy(z) then 1
satisfies

1
y' + [1+4—932]y:0»($>0)

The function y given by x(z) = sin x satisfies y” + y = 0. Apply Ex. 4 of Sec. 3.4,
Chap. 3, to show that there is a zero of .J, between any two positive zeros of x.)

Show that J| satisfies the Bessel equation of order one
22y + xy + (22 — 1)y = 0.

(a) Prove that the series defining .J, and J_, converge for |z| < oc.

(b) Prove that the infinite series involved in the definition of K, converges |z| <
0.

Define ﬁ when k is a non-positive integer, to be zero. Show that if n is a

positive integer the formula for J_,(z) gives

(a) Use the formula for J,(x) to show that
(x%Jy) () = % Jo_1(x).

(b) Prove that
(x7%J,) () = —2%Jop1 ().

Answer for check your progress

1. (a)

2.(d) 3.(b) 4.(b) 5 () 6.()

Suggested Reading

1.

2.

3.

M. D. Raisinghania, Advanced Differential Equations, S.Chand and Company Ltd.
New Delhi 2001.

G. F. Simmons, Differential Equations with Applications and Historical Notes,
Tata McGraw Hill, New Delhi, 1974.

W. T. Reid, Ordinary Differential Equations, John Wiley and Sons, New York,
1971.

126



Unit 5

Existence and Uniqueness of Solutions
to First Order Equations

OBJECTIVE:

After going through this unit, you will be able to identify the homogeneous differential
equations and find the solution of a given differential equation using variables separa-
ble. We understand the significance of exact differential equations and the equations
reducible to homogeneous form. Finally, we define the significance of successive ap-
proximations and the various methods of successive approximations. And also explain
how the Lipschitz condition will help to prove the existence and uniqueness theorems.

5.1 Introduction

In this unit we consider the general first order equation

y' = f(z,y), (5.1)

where [ is some continuous function. Only in rather special cases is it possible to find
explicit analytic expressions for the solutions of [5.1] We have already considered one
such special case; namely, the linear equation

Y = g(x)y + h(z), (5.2)

where g, h are continuous on some interval /. Any solution ¢ of [5.2] can be written in
the form

o(z) = eQ(I)/ e QOn(t)dt 4 Q™ (5.3)

0

where

where zo € I, and c is a costant. Our main goal is to prove that a wide class of
equations of the form [5.1| have solutions, and that solutions to initial value problems
are unique. If f is not a linear equation there are certian limitations which must be
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expected concerning any general existence theorem. To illustrate this consider the
equation
2
v =y
Here f(x,y) = y?, and we see f has derivatives of all orders with respect to z and y

at every point in the (x,y)-plane. A solution ¢ of this equation satisfying the initial
condition

is given by

as can be readily checked. However this solution ceases to exist at x = 0, even though
f is a nice function there. This example shows that any general existence theorem
for|5.1| can only assert the existence of a solution on some interval near-by the initial
point.

The above phenomenon does not occur in the case of the linear equation for
itis clear from [5.3] that any solution ¢ exists on all of the interval I. This points up one
of the fundamental difficulties we encounter when we consider nonlinear equations.
The equation often gives no clue as to how far a solution will exist.

We prove that initial value problems for equation [5.1 have unique solutions which
can be obtained by an approximation process, provided f satisfies an additional con-
dition, the Lipschitz condition. We first concentrate our attention on the case when
f is real-valued, and later show how the results carry over to the situation when f is
complex-valued.

5.2 Equations with variables separated

A first order equation

y' = flz,y)
is said to have the variables separated if f can be written in the form

_9(@)
flz,y) = ()

where g, h are functions of a single argument. In this case we may write our equation

as d
h(y) =2 = g(a), (5.4)

or
h(y)dy = g(x)dx

and we readily see the origin of the term "variables separated". For simplicity let
us discuss the equation in the case g and h are continuous real-valued functions
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defined for real x and y, respectively. If ¢ is a real-valued solution of on some
interval / containing a point x(, then

for all x € I, and therefore

/ ") (£)dt = / "yt 5.5)

xo xo

for all z € I. Letting u = ¢(¢) in the integral on the left in we see that[5.2) may be

written as oo
/ h(u)du = / g(t)dt.
o(xo) x0

Conversely, suppose = and y are related by the formula

/y h(u)du = /x g(t)dt, (5.6)
Yo w0

and that this defines implicitly a differentiable function ¢ for = € I. Then this function

satisfies
o(x) x
/ h(u)du:/ g(t)dt
Yo o

for all x € I, and differentiating we obtain

ho(x))¢'(x) = g(x),

which shows that ¢ is a solution of|5.4/on /. In practice the usual way of dealing with
is to write it as

h(y)dy = g(x)dzx

(thus separating the variables), and then integrate to obtain

/h(y)dy = /g(i)daf +e,

where ¢ is a constant, and the integrals are anti-derivatives. Thus

Hw) = [y, 6@ = [ gl
represent any two functions H, GG such that
H =h G =g
Then any differentiable function ¢ which is defined implicitly by the relation
H(y) =G(z)+c (5.7)

will be a solution of Therefore it is usual to identify any solution thus obtained
with the relation[5.7] We summarize in the following theorem.
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Theorem 5.1 Let g, h be continuous real-valued functions for a < x < b, ¢ < y < d
respectively, and consider the equation

h(y)y' = g(x). (5.8

If G, H are any functions such that G' = g, H' = h, and c is any constant such that the
relation
H(y) = G(z) + ¢

defines a real-valued differentiable function ¢ for x in some interval I contained in a <
x < b, then ¢ will be a solution of [5.8|on I. Conversely, if ¢ is a solution of [5.8|on I, it
satisfies the relation

H(y) =G(z) + ¢

on I, for some constant c. The simplest example is that case in which h(y) = 1. Then
y' = g(x), and every solution ¢ has the form

o(r) = G(z) + ¢, (5.9

where G is any function on a < x < b such that G’ =, g, and c is a constant. Moreover, if
¢ is any constant, defines a solution of y = g(x). Thus we have found all solutions of
y =g(xr)ona<z<bh

The function ¢ will be a solution of ¥/ = g(x)/h(y) on I, provided h(¢(z)) O for all = in
I. Another simple case occurs when g(z) = 1, for then we have

1
/
o = —— (5.10)
h(y)
or
h(y)dy = dzx.
Thus, if H' = h, any differentiable function defined implicitly by the relation
H(y) =z +e¢, (5.11)
where c is a constant, will be a solution of
Example 5.1 Find the solutions of iy = 1.
1
Solution: Comparing the given equation with the equation |5.10, we get h(y) = "
which is not continuous at y = 0. We have
d
y_g = dx,
and thus the relation [5.17] becomes
1 —1
—— =2 + C, or y — .
Y Tr+c

Thus, if ¢ is any constant, the function ¢ given by

P(z) = x_jc (5.12)
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is a solution of ¢/ = 42, provided = # —c.

Note: It is important to remark that the separation of variables method of finding
solutions may not yield all solutions of an equation. For example, it is clear from
y' = 1? that the function ) which is identically zero for all z is a solution of ' = 3.
However, for no constant ¢ will the ¢ of yield this solution.

Example 5.2 Find the solutions of 3y = 3y*/°.

Solution: The given equation can be written as

dy

if y # 0, and hence to

y'P=x+¢ ory=(x+c)d

where c is a constant. Thus the function ¢ given by
¢(x) = (v +c)’ (5.13)

will be a solution of 4/ = 33/3 for any constant c.
Note:

2/3

1. The identically zero function is a solution of 3/ = 3y*/2 which can not be obtained

from[5.13]
2. The two functions ¢ and ¢ given by
6(z) = 2, V(@) =0, (—o0 <z <o),

are solutions of 3/ = 3y?/ which pass through the origin. Actually there are
infinitely many functions which are solutions of 3/ = 33?3 passing through the
origin. To see this let k£ be any positive number, and define ¢, by

op(xz) =0, (—oo <z <k),
or(z) = (x —k)*, (k<z<oo).

Then ¢, is a solution of y/ = 3y?/3 for all real z, and clearly ¢;(0) = 0. This
implies that nonlinear equations may have several solutions satisfying a given
initial condition.

Let us sum up
1. We have discussed the concept of variable separable method.

2. We have provided the important remark to the separation of variables method
with an example.

3. Finally, we rectified some illustrative examples.
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Check your progress

1. Afunction f defined for real z, y is said to be homogeneous of degree k if f(tx, ty)
is equal to

@) t* f(z,y) () t7% f(z,y) () t2* f(z,y) (d) tY*f(z,y)

2. Consider the differential equation zdy + y(z + y)dx = 0. Which of the following
statements is true.
(a) The differential equation is linear (b) Variables separable form
(c) The differential equation is exact (d) None of these

5.3 Exact equations

Suppose the first order equation ¢y’ = f(z,y) is written in the form

r_ —M(ZE,y)
YT N(w,y)

or equivalently
M(x,y)+ N(z,y)y =0, (5.14)

where M, N are real-valued functions defined for real z,y on some rectangle R. The
equation [5.14| is said to be exact in R if there exists a function F' having continuous
first partial derivatives there such that

oOF OF
o o Py 5.15
Ox Ty ’ (5-15)
in R. If is exact in R, and F is a function satisfying [5.15] then[5.14 becomes
oF oF

%(1@ y) + a—y(l’,y)y =0.

If ¢ is any solution on some interval I, then

OF OF 1
55 (1 ¢(@) + a—y(iﬁ, ¢(x))¢'(x) = 0, (5.16)

for all z € I. If ®(z) = F(z,¢(x)), then equation |5.16| just says that ¢'(x) = 0, and
hence

F(z, ¢(x)) = ¢,

where ¢ is some constant. Thus the solution ¢ must be a function which is given
implicitly by the relation
F(z,y) =c. (5.17)

Looking at this argument in reverse we see that if ¢ is a differentiable function on
some interval / defined implicitly by the relation then

F(z,¢(x)) = ¢,
for all « € I, and a differentiation yields Thus ¢ is a solution of
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Theorem 5.2 Suppose the equation
M(z,y) + N(z,y)y' =0 (5.18)
is exact in a rectangle R, and F' is a real-valued function such that

OF oF

in R. Every differentiable function ¢ defined implicitly by a relation
F(z,y) =¢, (c= constant)

is a solution of and every solution of whose graph lies in R arises this way.

The problem of solving an exact equation is now reduced to the problem of determin-
ing a function F satisfying If is exact and we write it as

oF oF
M dx + N dy = — dx + — dy =0
(z,y)dz + N(z,y)dy = ——(,y)dz + o (z,y)dy
we recognize that the left side of this equation is the differential dF of F. This is the
explanation of the term "exact"; the left side is an exact differential of a function F'.
Sometimes an F' can be determined by inspection. For example, if the equation

A (5.20)
)
is written in the form
xdxr +ydy =0

it is clear that the left side is the differential of (z* + y?) /2. Thus any differentiable
function which is defined by the relation

2> +y*=¢, (c= constant)

is a solution of Note that the equation does not make sense when y = 0.
The above example is also a special case of an equation with variables separated.
Indeed any such equation is a special case of an exact equation, for if we write the
equation as

it is clear that an F' is given by

where G’ = g, H' = h. How do we recognize when an equation is exact? To see how,
suppose
M (z,y)dz + N(z,y)dy =0

is exact, and F is a function which has continuous second derivatives such that

oF oF

— =M, — =N.
Ox T Oy
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Then
0’F oM 0*F ON

OyOx - oy’ 0xdy " Oz
and, since for such a function

OP’F  O*F

Oydx  O0xOy
we must have

oM oM

Oy Or’

This is the condition we are looking for, since it is true that if this equality is valid, the
equation is exact.

Theorem 5.3 Let M, N be two real-valued functions which have continuous first partial
derivatives on some rectangle

R: |z—w|<a, |y—wl<h

Then the equation
M(z,y) + N(z,y)y =0

is exact in R if, and only if,
oM  ON

in R.

Proof:
We have already seen that if the equation is exact, then is satisfied. Now suppose
5.21|is satisfied in R. We need to find a function F satisfying

OF OF

— =M, — =N.
Ox T Oy

To see how to do this, we note that if we had such a function then

F(x,y) — F (w0,90) = F(z,y) — F (xo, (5607 y) — F (20, %0)

y)+

—/ 3yds+/ (xo,t
dy
/Msyds—i—/Nxo, )

Similarly we would have
F(z,y) — F(vo,90) = Fl(z,y) — F(2,9)+ F(z,4%) — F (o, Yo)

*OF 2 OF
= /a—y(a:,t)dt+/x %(S,yo)ds

Yo 0

_ /N(;U,t)dH/ZM(S,yO)ds. (5.22)

Yo
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We now define F' by the formula
x Yy
F(z,y) = / M (s,y)ds + / N (zo,t) dt. (5.23)
zo Yo

This definition implies that F'(z¢,yo) = 0, and that

OF

%(xvy) = M(JL’,y),

for all (z,y) in R. From we would guess that F' is also given by
Yy x
F(z,y) = / N(z,t)dt +/ M (s,yo)ds. (5.24)
Yo xo
This is in fact true, and is a consequence of the assumption Once this has been

shown, it is clear from that

oF
a_y(x7y) - N(l’,y),

for all (z,y) in R, and we have found our F. In order to show that[5.24]is valid, where
F is the function given by|5.23] let us consider the difference

F(x,y)—{/yj N(x,t)dtJr/x:M(s,yo) ds}

_/I (M(s,y) — M (5, y0)] ds—/ N(z,1) — N (20,1)] dt

Zo Yo

oM Y[ [*ON
= /;O |: " 8—y(8,t>dt:| dS — /y;) |: . %<S7t)d8:| dt

v loM ON
—/xo /yo |:a—y<8,t)—%(8,t):| det,

which is zero by virtue of
Example 5.3 Let us consider the equation

. 31— 21y

y = (5.25)

x2 — 2y

which we write as
(31‘2 — Qxy) dx + (2y - x2) dy = 0.

Here
M(z,y) = 32> — 22y, N(z,y) =2y —2°,

and a computation shows that

oM ON
a—y(%y) = %(x,y) = —2z,
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which shows that our equation is exact for all z,y. To find an F we could use either of

the two formulas or [5.24} but the following way is often simpler. We know there is
an F such that

OF OF
oM, =N
Ox T Oy
Thus F satisfies
F
g—x(% y) = 3a® - 2ay,

which implies that for each fixed y,
F(z,y) =2 — 2"y + f(y), (5.26)
where f is independent of x. Now 0F /0y = N tells us that
—2* + f'(y) =2y — 2”

or that
fy) =2y.
Thus a choice for f is given by f(y) = y?, and placing this back into [5.26|we obtain finally

Flz,y) = 2° — 2y + .

Any differentiable function ¢ which is defined implicitly by a relation

- 2%y +y* =, (5.27)
where ¢ is a constant, will be a solution of and all solutions of arise in this
way. Often the solutions are identified with the relations It is proved in advanced
calculus texts that [5.27) will define a unique differentiable function ¢ near, and passing
through, a given point ( ¢, 1o ) provided that

F (z0,90) = ¢
and that oF
—_— 0.
ay (x()?y()) 7é
Notice that the only points (zg,yo) satisfying for which
OF
el -0
ay (IOJ yO)
are those satisfying
—x5 +2yp =0

and these are precisely the points where the given equation [5.25] is not defined. Thus,
if (ro,y0) is a point for which (3z* — 2zy) / (2% — 2y) is defined, there will be a unique
solution of whose graph passes through (zg, ).

Let us sum up

1. We have discussed the significance of exact differential equations and it’s solu-
tions.
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2. Finally, we solved some illustrative examples.
Check your progress

3. The differential equation xdy — ydx = 0 represents
(a) Parabolas (b) Straight lines (c) Circles (d) None of these

4. For the differential equation M (z,y) + N(z,y)y’ = 0 to be exact if

2 2
() 94 =95 (b) 94 = 9% (o) §2 = & (d) None of these

5.4 The method of successive approximation
We now face up to the general problem of finding solutions of the equation
y' = f(z.y), (5.28)
where f is any continuous real-valued function defined on some rectangle
R: Jz—m|=a, [y—yl=b (a,0>0),

in the real (z,y)-plane. Our object is to show that on some interval / containing z,
there is a solution ¢ of satisfying

é(xo) = Yo. (5.29)

By this we mean there is a real-valued differential function ¢ satisfying such that
the points (z, ¢(z)) are in R for « in I, and

¢'(x) = f(z, ¢(x)),

for all z in 1. Such a function ¢ is called a solution to the initial value problem

y, = f(x,y), ?J(xo) =% (530)

on . Our first step will be to show that the initial value problem is equivalent to an
integral equation, namely

yzyw+/)ﬂtwdt (5.31)

on [. By a solution of this equation on [ is meant a real-valued continuous function ¢
on [ such that (z,¢(x)) is in R for all z in I, and

mm:%+/3wwmﬁ, (5.32)

for all z in 1.

Theorem 5.4 A function ¢ is a solution of the initial value problem on an interval
I'if and only if it is a solution of the integral equation [5.31|on I.
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Proof:
Assume that ¢ is a solution of the initial value problem on

y/ - f(xay)a ?J(iﬁo):yo
= ¢'(x) = flz,0(x)) and ¢(xo) = yo
¢'(t) = f(t.o(1) (5.33)

on /. Since ¢ is continuous on /, and f is continuous and the rectangle R, the function
F defined by

F(t) = f(t, (1))

is continuous on /. Integrating from z( to x we obtain

o
x

O]z = f(t, o(t))dt

z0
X

¢(x) — d(xo) = f(t, o(t))dt

o

/%;dt = [ s, o))
GO

T

o(x) = dlxo)+ [ [f(t o(t))dt

zo

and since ¢(x¢) = yo we see that ¢ is a solution of

y = yo+/ f(t,y)de.

Conversely, assume that ¢ is a solution of the integral equation

T

y = yo+ [ [ft,y)dt

o
T

¢(x) = olxo) + [ [(t, o(t))dt. (5.34)

Z0

Differentiating with respect to z,using the fundamental theorem of integral calculus,
that

¢(x) = 0+ f(z,¢(x))
¢'(x) = flz, o(x)),

for all x on I. Moreover from it is clear that ¢(zy) = o, and thus ¢ is a solution
of the initial value problem v/ = f(x,y), y(z¢) = yo. We now solving As a first
approximation to a solution we consider the function ¢, defined by

¢($0) = Yo-

It looks like you are describing a process to solve an initial value problem using suc-
cessive approximations or iterations. The method you’re describing is closely related
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to the Picard iteration method, which is used to approximate solutions to differential
equations.
Given the initial value problem of the form:

y'(x) = f(z,y(2)), y(zo) = Yo

The Picard iteration method defines a sequence of function ¢, (x) that converge to the
solution of the initial value problem. Here is how the process works:

e Initial Function: Start with the initial approximation ¢q(x) = ypo.

e Successive approximation : Define the successive approximation by iterating the
integral equation:

Gni1 () = Yo + / "t ()t

This process can be summarized as follows:

e Initial approximation:

d)o(l“) = Yo-
e First iteration:

¢1(z) = yo + / F(t, do(t))dt.

Since ¢y(t) = yo,this simplifies to:
o) =wn+ [ St

e Second iteration:

¢2(x) = yo +/ F(t, é1(t))dt.
e General iteration:

Gt (z) = 3o + / Ft,du(®))dt (k=0,1,2,---). (5.35)

zo

Taking the limit of this sequence as k — oo gives the solution to the integral equation
Pr(x) = o(x),
o(z) = lim ¢ (z).
k—o00

Therefore the solution to the original differential equation can be expressed as:

() = yo + + /x f(t, o(t))dt.

This limit, if it exists and unique is the solution to the initial value problem y/(z) =
f(z,y(x)) with the initial condition y(z() = yo. Thus ¢ would be our desired solution.
We call the functions ¢, do¢o, - - - defined by[5.35]successive approximations to a solu-
tion of the integral equation[5.31]or the initial value problem[5.30} One way to picture
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the successive approximation is to think of a machine S (for solving) which converts
functions ¢ into new functions S(¢) defined by

S(6)(x) = yo + / f (¢, o(0))dt.

zo

A solution of the initial value problem [5.30 would then be a function ¢ which moves
through the machine untouched, that is, a function satisfying S(¢) = ¢. Starting
with ¢g(z) = yo, we see that S converts ¢, into ¢;, and then ¢; into ¢, . In general
S(¢r) = ¢r+1, and ultimately we end up with a ¢ such that S(¢) = ¢.

Figure 5.1:

Of course we need to show that the ¢, merit the name, that is, we need to show
that all the ¢, exist on some interval / containing xy, and that they converge there to
a solution of or of Before doing this let us consider an example

Yy =y, y(0)=1, (5.36)

where zo = 0, 1y, = 1. The integral equation corresponding to this problem is

y = ?Jo+/ f(t,yo)dt
zo

x
y = 1+/ ty dt,
0

and the successive approximation are given by

o(ro) = wo
= ¢(xo) = 1,

bria(r) = 1+/Oxt¢k<t)dt (h=0,1,2,-).

Thus



and it may be established by induction that

dr(z) =

2\ 2
I+ 4+ () ++
21\ 2

2

1

1

k!

_)'“'

We recognize ¢ (x) as partial sum for the series expansion of the

numbers a, b/M. Then we prove that the ¢, are all defined on |z — 2| < a.

d(x) = /2.

We know that this series converges for all real x and this just means that

gbk(x) — qb(x)v (k — OO),

for all real x. The function ¢ is the solution of the problem|[5.36] Let us now show that
there is an interval / containing x, where all the functions ¢, £ = 0,1, --- defined by
[5.35]exist. Since f is continuous R, it is bounded there, that is, there exists a constant
M > 0 such that |f(z,y)| < M, for all (z,y) in R*. Let o be the smaller of the two

Theorem 5.5 The successive approximations ¢y, , defined by ¢(xo) = yo exist as continu-
ous functions on I : |x — x9| £ a = min|[a,b/M], and (z, ¢y) is in R for z in I. Indeed,

the ¢y satisfy

forall xin I.

‘(bk(x) - y0| < M\ﬂf - 350|>

Yo+b

y—Yo=M(x-xp) ,

/

e

(xa,{yo)

y—Yo=—Mlx—xg)

l‘n +a

Xo+8

Yo—b

Figure 5.2:
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Proof:
We prove this theorem by induction method. We have ¢(zq) = yo. Clearly ¢, exists on
I as a continuous functions, and satisfies with k = 0. Now k£ =1,

¢M)=mfﬁﬂwwwt
%@==%+/%@Wﬁ (5.38)

Since f is continuous on R the function f(¢,y,) is continuous on I.

1(r) —yo = /f(t,yo)dt

xo
WM:M/MH
zo

o

= M\t|§0:M|x—x0]
|p1(x) —yo| < Mz — x|

[91(z) —wol <

Yot+b

¥ —Yo=—M{x—xg)

Yo—b

Figure 5.3:

which shows that satisfies ¢; the inequality Since f is continuous on R the
function F|, defined by

FO(t) = f(ta yO)

is continuous on /. Thus ¢;, which is given by

M@=m+fﬂwﬁ

Zo
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continuous on /. Now assume the theorem has been proved for the functions ¢q, ¢1, -, ¢.
We prove it is valid for ¢, ;. Indeed the proof is just a repetition of the above. We
know that (¢, ¢x(¢)) is in R for ¢ in I. Thus the function F}, given by

Fi(t) = f(t, ¢ (1))

exists for ¢ in I. It is continuous on [ since f is continuous on R, and ¢, is continuous
on /. Therefore ¢, 1, which is given by

b () = yo + / Fy(t)dt,

exists as a continuous function on /. Moreover
xT
uaa() —wl | [ IR0 dt\ < Mz — z),
o

which shows that ¢, satisfies The theorem is thus proved by induction.
Note:
Since for x in I, |x — x| < b/M, the inequality implies that

|0k () — ol =0

for z in I, which shows that the points (z, ¢x(z)) are in R for x in I.
The precise geometric interpretation of the inequality is that the graph of each
or, lies in the region 7" in R bounded by the two lines

y—yon(x—xo), y—yoz—M(f—xo)

Tr—Tg=0Q, T—Tg=—«Q

see Figs 5.2 and 5.3.

5.4.1 The Lipschitz condition

Let f be a function defined for (z,y) in a set S. We say f satisfies a Lipschitz condition
on S if there exists a constant K > 0 such that

‘f(xayl) _f(xvyZ)‘ < K|y1 _y2’7

forall (z,v1), (x,y2) in S. The constant K is called a Lipschitz constant. If f is continu-
ous and satisfies a Lipschitz condition on the rectangle R, then the successive approxi-
mations converge to a solution of the initial value problem on |z — x| < «. Before we
prove this, let us remark that a Lipschitz condition is a rather mild restriction on f.

Theorem 5.6 Suppose S is either a rectangle
‘$_$0| §a> ’y—yo‘ Sba (a7b>0)>

or a strip
|:c—x0\ <a, |y‘ < 00, (CL>O>,

and that f is a real-valued function defined on S such that 0 f /Jy exists, is continuous on

S, and
0 )
\8—§<x,y> <K, ((@y)in$)

for some K > 0. Then f satisfies a Lipschitz condition on S with Lipschitz constant K.
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Proof:
We have
Y1 a f

f(x7y1) - f<x7y2) = a_y(x7t)dt7

Y2

and hence

af

/1/1

Y2 ay

for all (z,y1), (z,y2) in S.

An example of a function satisfying a Lipschitz condition is

‘f(mayl) _f(x,QQ)‘ < (l’,t)’dtl < K‘yl _y2’7

flz,y) = zy°
on
R: |z[ <1, [yl <1
Here 5
(o) =2l <2,

for (z,y) on R. This function does not satisfy a Lipschitz condition on the strip
St fz[ <1 [yl < oo,

since

‘f(xvyl) — f(f,())
y1—0
which tends to infinity as |y;| — oo, if |z| # 0. An example of a continuous function

not satisfying a Lipschitz condition on a rectangle is

flx,y) =y*?

\ — lellal

on
R:|z| <1, |yl <1
Indeed, if y; > 0,
f () = f@,0)] 1

-0 L

which is unbounded as y; — 0.
Let us sum up

1. We have defined the initial function, Initial and successive approximation.

2. We have discussed the significance and various methods of successive approxi-
mations.

3. We have characterized the Lipschitz condition.

4. Finally, we solved some suitable examples.
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Check your progress

5. If Sis a strip |z — 29| < a, |y| < oo (a,0) and if f is real valued continuous
function defined on S and g—i exist and also |a%f(x,y)| < K; (z,y) € S for a
positive constant K.

(a) f satisfies Lipschitz condition on S with Lipschitz constant K.

(b) f does not satisfies Lipschitz condition on S with Lipschitz constant K.
(c) Both (A) and (B) are true.

(d) None of these.

6. A function satisfying Lipschitz condition is f(z,y) = zy*on R : |z| < 1,]y| <1
(a4 (b) 1 (©3 (d) 2

5.5 Convergence of the successive approximation

We now prove the main existence theorem.

Theorem 5.7 (Existence Theorem). Let f be a continuous real-valued functions on the
rectangle R : |z —xo| S a, |y—yo| = b (a,b > 0), and let |f(z,y)| < M, for all
(x,y) in R. Further suppose that f satisfies a Lipschitz condition with constant K in R.
Then the successive approximations

¢0($) = Yo, ¢k+1($) :y0+/ f(t7 ¢k(t)) dta (k:071727"')7
o
converge on the internal I : |x — x¢| < a = min{a, b/M?} to a solution ¢ of the initial
value problem y' = f(z,y), y(xo) =yoon I.

Proof:
a. Convergence of {¢;(z)} :
The key to the proof is the observation that ¢, may be written as

br = o+ (¢1 — ¢o) + (P2 — ¢1) + -+ + (I — Dr—1),

and, hence ¢, (x) is a partial sum of the series

CbO“‘Z ¢p1

oo

Pr(@ +Z [6p(2) = Ppa ()] (5.39)

Therefore to show that the sequence |¢(z)| converges is equivalent to showing that
the series converges. To prove the latter we must estimate the terms ¢,(z) —
¢p—1(z) of this series. By Theorem 5.5 the functions ¢, all exist as continuous functions
on I, and (z1, ¢,(z)) is in R for x in I. Moreover, as shown in Theorem 5.5,

|p1(7) — do(x)| < M|z — 20 (5.40)
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for x in . Writing down the relations defining ¢, and ¢,
k=0, ¢i(z) = yo+ /; f(t, do(t)) dt, (5.41)
k=1, ¢és(r) = yo+ /: ft, 1()) dt, (5.42)
and subtracting [5.41] from we obtain
o) = n(x) = [ 1F10.610) = 1t u(0)
Therefore

|p2(x) — ()] <

[ Ute.6.0) - rie.on(0) de
= [ 1) - s o) ai,

and since f satisfies the Lipschitz condition

|f(«75,y1) - f(x7y2)| < K|y1 - y2|7

we have

|p2(7) — P1(2)] < K

[ 1ot —aso(t)\dt].

x
x0

62(2) — 61 (z)] < KM/x(t—xo)dt

- o (5]

o

2
— KM (x_QmO) . (5.43)

Using we obtain

|po(x) — ¢1(x)] < KM

Thus, if x > z,

In case x < zy,
6a(2) — 61 (2)] < KM / (= zo)dt

zo
= —KM/ (t —xo)dt

()]
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2
— KM <“”_2x°) . (5.44)

We shall prove by induction that

MEK?P™ |z — x|
)

. (5.45)

|6p(2) = Gp1(2)] =

for all x in 1. We have seen that this is true for p = 1 and p = 2. Let us assume = > xg;
the proof is similar for x < xy. Assume for p = m. Using the definition of ¢,

and ¢,,,, we obtain

bia(r) = ot / " Ft b)) de
bm(@) = yo+ / CF(t, (1)) e

D1 () — G(z) = / 1 () — £t br ()] . (5.46)

and thus

|¢m+1<x> -

Pm ()|

IN

| [ 110000) = it 000 a
- /|f< (1)) = F(t, b1 (1))] dt.

Using the Lipschitz condition we get

|Om41(2) = Pm ()]

This is just[5.45] for p =

IN

K| [ tomtt) - gzsm_l(t)\dt\ .
= K onlt) — b (0)]dt.

xo
MEK™ |z — xo|™

m!
T — x(]’m—H

(m+1)!

— mxm]

m+1, and hence isvalid forallp = 1,2, - - - , by induction.

It follows from [5.45| that the infinite series

o0

e +Z [6p(2) — p_1 ()] (5.47)

=1

is absolutely convergent on /, that is, the series

|do( \+Z\¢p — ¢y ()] (5.48)
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is convergent on /. Indeed, from we see that

© =1, _ P
Zw»p )] < S METE—

p=1 P!

M K KP|x — a0
fz P!

p=1
K

which shows that the p-th term of the series in[5.48]is less than or equal to M/K times
the p-th term of the power series for eI~ Since the power series for eXl*==0l is
convergent, the series|5.48|is convergent for x in /. This implies that the series is
convergent on /. Therefore the k-th partial sum of which is just ¢, (z) tends to a
limit ¢(x) as k — oo, for each z in 1.

b. Properties of the limit ¢:
This limit function ¢ is a solution to our problem on I. First, let us show that ¢ is
continuous on /. This may be seen in the following way. If x{, 2, are in

bena) = wot [ f(t o) dt

o
T2

Pey1(z2) = wo+ [t on(t))dt

zo

Y o) dt

|Prg1(21) = Pry1(z2)] <

-/ " 1F 6] ),

1
_ M/ dt],

= M]xl — .%'Ql,

which implies, by letting £ — oo,
|0(21) — d(@2)] < Mlxy — 22l (5.49)

This shows that as 25 — 1, ¢(x2) — ¢(x1), thatis, ¢ is continuous on /. Also, letting
T1 = I,y = To in[5.49|we obtain

|p(z) — yo| < Mz — 20,

which implies that the point (x, ¢(z)) are in R for all z in I.
c. Estimate for |¢(z) — ¢ ()| :
We now estimate |¢(x) — ¢r(z)|. We have

[e.9]

oz +Z¢p — ¢pa ()],

=1
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k

Or(x) = do(x) + D [dp(x) — p1(2)].

p=1

Therefore, using [5.45, we find that

o) = ge(@)] = D [8p(2) = dp1(@)] = D [dp(x) = dpor ()]

Y (@p(@) = dpa (@)

p=k+1

= Z |¢p gbp 1 )|

p=k+1

IA

o

. Z MKP|I—$0|P
N K P!

p=k+1
o~ MKPz—xolP
= Z_T

M (KOé)k+1 (Ka)k+2
K [(lﬁtl)! (k + 2)! *}

_ é{(}(a)k+1[1_+ Ka N (Ka)? _+...}
K (k+1)! (k+2)  (k+2)(k+3)
M (Ka) 1t S (Ka)?
- ?((k+)1)!p;<13!> k=012
M(KO[)IH_l Ko

<

. k+
Letting ¢, = %, we see that ¢, — 0 as k — oo, since ¢, is a general term for the

series for e, In terms of ¢, may be written as

|6(x) — dr(2)] = =", (5.51)

M
}(
a kE+1
where ¢, = % , |o(x) — ér(x)] as k — oo
d. The limit ¢ is a solutlon
To complete the proof we must show that ¢(z) is a function of the initial value problem

vy = f(x,y), y(xro) = yo that is, we have to prove that
o) = w+ [ (o) (5.52)
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o) — dlag) = / " f o)t

for all x in /. The right side of makes sense for ¢ is continuous on I, f is contin-
uous on R, and thus the function F' is given by

F(t) = f(t o(t))dt,

is continuous on /. Now

Dr+1(2) = Yo +/ f(t, on(t))dt
and ¢y+1(z) = ¢(z), as k — co. Thus to prove [5.52| we must show that for each z in I
[ ot~ [ reow -0 (5.5

we have

|p(z) — Ppqr ()| =

[ rwona— [ s ¢k<t>>dt]
< / 1R B(0) — St du(0))]de
s / " 16(8) — (0]t (5.54)

using the fact that f satisfies a Lipschitz condition. The estimate [5.51|can now be used
in to obtain

/x :f<t,¢<t)>dt— / :f<t,¢k(t>>dt‘ <k /

:MekeKo‘/ |dt|

0
= Mepe™®(|x — 20|) — 0,

Ka

dt

M
—€re
Gk

which tends to zero as k — oo, for each x in /. This proves hence that ¢ satisfies
Thus our proof of this theorem is now complete.

Theorem 5.8 The k-th successive approximation ¢, to the solution ¢ of the initial value
problem of the above theorem satisfies

forall xin I.
Let us sum up

1. We have discussed the existence for convergence of the successive approxima-
tion.
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2.

We have proved the properties of limit function and k—th successive approxima-
tion.

Check your progress

7.

8.

The k-th successive approximation ¢, to the solution ¢ of the BVP satisfies
o k+1 a @ k+1 a

() [6(x) — ulo)] < LI ke () g(a) — gu(a)] < LED oK
o)kt o o)kt o

(© |¢(x) — du(x)] < - Gpree” (@ [p(x) — gi(x)| < - EG—eRe?

state the existence theorem for successive approximation.

Summary
The focus of this unit is the theoretical aspect of ODEs, particularly the conditions
under which solutions exist and are unique. Topics discussed include:

In-depth discussion of the conditions under which unique solutions to ODEs exist
(Picard’s theorem).

An exact equation is a type of differential equation that can be solved by finding a
function whose total derivative matches the given equation. It is typically written
in the form:

M (z,y)dx + N(z,y)dy =0

The method of successive approximation (also known as Picard’s method) is an
iterative technique for solving differential equations by repeatedly refining an
initial guess for the solution. Starting from an initial estimate, the method gener-
ates a sequence of functions that converge to the exact solution of the differential
equation.

The Lipschitz condition ensures that a function f(x,y) satiesfies | f(x1)+ f(z2)] <
K|z1 + X,| for a constant K. It guarantees that the function’s behavior is not too
erratic, which is useful for ensuring the existence and uniqueness of solutions to
differential equations.

The convergence of successive approximation ensures that if a differential equa-
tion satisfies the Lipschitz condition, then the sequence of approximations gener-
ated by the method will converge to the true solution. This convergence relies on
the iterative process refining the solution with each step based on the previous
approximation.

Glossary

Variable separable: A differential equation is said to be separable if the variables
can be separated. To solve the equation it is integrated on both sides, i.e first
separating the variables and then integrating.

Exact differential equation: A differential equation is said to be exact if it can
be obtained from its primitive equation directly by differentiation and without
involving any further process of reduction, elimination, multiplication, etc.
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Picard’s iteration method: A technique for finding approximate solutions to dif-
ferential equations by iteratively refining an initial guess. Each iteration involves
substituting the current approximation into the differential equation to generate
a new, hopefully more accurate, approximation.

Iteration method: A numerical technique for finding approximate solutions by
repeatedly refining an initial guess using a defined iterative process.

Lipschitz condition: The Lipschitz condition requires that the difference in func-
tion values is bounded by a constant times the difference in input values. This
ensures the function does not vary too quickly and helps in guaranteeing the
existence and uniqueness of solutions to differential equations.

Self-assesment questions

1.

If the IVP satisfies Lipschitz condition, then it must have
(a) Only one solution (b) Infinite number of solution
(c) Unique solution (d) None of these

. A function satisfying Lipschitz condition is f(z,y) = zy?on R: |z| < 1,|y| < 1

(@ 4 (b) 1 ()3 (d) 2

For the IVP, % = y2 + cos®(z),z > 0. The largest interval of existence of the
solution predicted by Picard’s theorem is,
@ [0,1] ) [0, 3] (@ [0, 4] () [0, 4]

Find out the function which does not satisfies a Lipschitz condition on rectangle
R:lz| <1, |yl <17
@ f(z,y) =zyz O) f(z,y) =2y* © f(z,y) =2’y ) f(z,y) =y5

Consider the differential equation (zy + 2?) + (y* — y)y’ = 0. Which of the
following statements is true.

(a) The differential equation is linear (b) Variables separable form

(c) The differential Equation is exact  (d) None of these

The integrating factor of differential equation z%dy + y(z + y)dz = 0, is
1 1 1 1

(@ — (b) — @ — d -
T T T T

Find out the differential equation % —xtan(y —z) =1, is
(a) homogeneous (b) variable seperable (c) linear (d) exact

Find out the differential equation (z + 2y)(dx — dy) = dz + dy, is
(a) linear  (b) variable seperable  (c) homogeneous (d) exact

One of the integrating factor of differential equation (y* — 3zy)dz + (2? — xy)dy =
0, is

@ ) —

222 252y

1 1
©— d)—
Ty Ty
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10. Let y : R — R be differentiable satisfying the differential equations, % = f(y),
z € Ryy(0) = y(1) = 0, where f : R — R is a Lipschitz continuous function.
Then,

(@ y(x)=0iffx € 0,1 (b) y is bounded
(c) y is strictly increasing (d) 4/ is bounded.

EXERCISES

1. Find all real-valued solutions of the following equations:

(a) y/:ny
(b) yy ==
x + x?
© ¢y = 5
y—y
ety
d) v =
(d y Ty

(e) v = x%y? — 42>,

2. (a) Show that the solution ¢ of

y/ — y2
which passes through the point (xg, yy) is given by
Yo
xTr) = .

(Note: The identically zero solution can be obtained from this formula by
letting yo = 0.)

(b) For which z is ¢ a well-defined function?

(c) For which x is ¢ a solution of the problem

Yy =v* ylzo) =yo?

3. (a) Find the solution of ¢y = Qy% passing through the point (x¢,y,), where
Yo > 0.

(b) Find all solutions of this equation passing through (¢, 0).

4. (a) (a) Show that the method of Ex. 5 can be used to reduce an equation of the

form
, a1 x + by + ¢y
y=1r
asx + bay + co

to a homogeneous equation.

,_1 r+y—1 2
Y=9\"z52 )

153

(b) Solve the equation



5. The equations below are written in the form M (z,y)dx + N(x,y)dy = 0, where
M, N exist on the whole plane. Determine which equations are exact there, and
solve these.

(@) 2xydz + (2% + 3y?*)dy = 0

(b) (2% + zy)dz + zydy = 0

(c) e"dx+ (e(y+1))dy =0

(d) coszcos? ydxr — sinx sin 2ydy = 0

(&) 2%y3dx — 2?y*dy =0

(0 (z+y)de+ (z —y)dy =0

(&) (2ye** + 2z cosy)dx + (e** — a?siny)dy = 0
(h) (32%log|z| + 2% + y)dx + xdy = 0.

6. Even though an equation M (z, y)dz+ N(z,y)dy = 0 may not be exact, sometimes
it is not too difficult to find a function u, nowhere zero, such that,

w(@,y)M(z, y)de + u(z,y)N(z,y)dy = 0
is exact. Such a function is called an integrating factor. For example,
ydxr — xdy =0

is not exact, but multiplying the equation by u(z,y) = y% makes it exact for y # 0.
Solutions are then given by y = cx. Find an integrating factor for each of the
following equations, and solve them.

(@ (2y® + 2)dx + 3zy*dy =0
(b) coszcosydr — 2sinxsinydy = 0
(© (bz*y* + 2y)dx + (3zy + 2x)dy = 0
(d) (e¥ + xe¥)dx + xeVdy =0
(Note: If you have trouble discovering integrating factors, do Exs. 3-5 first.)
7. (a) Under the same conditions as in Ex. 3, show that if
M (z,y)dx + N(z,y)dy = 0,
has an integrating factor u, which is a function of y alone, then

1 (OM ON
=N oy ox

is a continuous function of y alone.

(b) If ¢ is continuous, and independent of x, show that an integrating factor is
given by

uly) = W),

where () is any function such that @)’ = q.

154



9.

10.

11.

12.

Consider the linear equation of the first order
y' +alz)y = b(x),

where a, b are continuous on some interval I.

(a) Show that there is an integrating factor which is a function of x alone.
(Hint: Ex. 4.)

(b) Solve this equation, using an integrating factor.

Consider the initial value problem

y=3y+1, y(0)=2.

(a) Show that all the successive approximations ¢, ¢1, - - - exist for all real .
(b) Compute the first four approximations ¢, ¢1, ¢2, ¢3 to the solution.

(c) Compute the solution.

(d) Compare the results of (b) and (c).

For each of the following problems compute the first four successive approxima-

tions ¢o, ¢1, P2, P3:
@ y —2*+y% y(0)=0
© v =y y(0)

0) =
0

Consider the problem
y =a*+y? y(0) =0,
on
R:|z| <1,y <1.

(a) Compute an upper bound M for the function f(z,y) = 2> + 4 on R.

(b) On what interval containing x = 0 will all the successive approximations
exist, and be such that their graphs are in R?

By computing appropriate Lipschitz constants, show that the following functions
satisfy Lipschits conditions on the sets S indicated:

(@) f(z,y)=42"+y* on S: |z| <1, |y[ < 1.

(b) f(z,y) = 2%cos?y +ysin®z on S:|z| <1, |y| < oo.

2

© f(r,y)=2%",0on S: 0<x<a, |y <oo, (a>0)
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) f(z,y) = a(@)y? + bx)y + c(x), on S |z[ <1, |y[ <2,
(a, b, ¢ are continuous functions on |z| < 1)

() f(z,y) =a(z)y+b(z), on S: [z] <1, |y < oo,
(a, b are continuous functions on |z| < 1)

13. (a) Show that the function f given by
flz,y) =y2
does not satisfy a Lipschits condition on
R: |z <1,0<y<L1.

(b) Show that this f satisfies a Lipschits condition on any rectangle R of the
form

R: |z|<a, b<y<eg (a, b, c > 0).

14. (a) Show that the function f given by
f(z,y) = 2*|y]
satisfies a Lipschitz condition on
R: |z| <1, |yl <1

(b) Show that g—i does not exist at (x,0) if x # 0.

15. Consider the problem
y' =1—2xy,y(0) =0.

(a) Since the differential equation is linear, an expression can be found for the
solution. Find it.

(b) Consider the above problem on R:
R:lz| <3 Jyl <1
If f(x,y) =1 — 2zy, show that
[f(z,y)] <2, ((2,y) €R),

and that all the successive approximations to the solution exist on |z| <
and their graphs remain in R.

1
2

(c) Show that f satisfies a Lipschitz condition on R, with Lipschitz constant K =
1, and therefore by Theorem 5.7 the successive approximations converge to
a solution ¢ of the initial value problem on |z| < 3.

(d) Show that the approximation a satisfies

|p(x) — ¢3(z)| < 0.01
for |z| < 1.

(e) Compute ¢s.
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16. Consider the problem
y' =1+y* y(0)=0.

(a) Using separation of variables, find the solution ¢ of this problem. (It is not
difficult to convince oneself that the separation of variables technique gives
the only solution of the problem.) On what interval does ¢ exist?

(b) Show that all the successive approximations ¢, ¢1, ¢ - -- exist for all real x.

(c) Show that ¢, — ¢(x) for each x satisfying || < 3. (Hint: Consider f(xz,y) =
1+ y?on

R:Jz| <3, Jyl <1
Show that o = 1.)
Answers for check your progess
1. 2.(b) 3.(b) 4.(b) 5@ 6.(d 7. (a)
8. Existence Theorem: Let f be a continuous real-valued functions on the rectangle
R: Jx—a9|Za, |y—w| b (a,b>0),andlet|f(x,y)] < M, for all (z,y) in R.

Further suppose that f satisfies a Lipschitz condition with constant K in R. Then the
successive approximations

60(2) = o, ¢k+1<x>=yo+/ St et dt, (k=0,1,2,--),

converge on the internal / : |z — x| < @ = min{a,b/M} to a solution ¢ of the initial
value problem ¢/ = f(z,vy), y(x¢) =1yoon I.
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