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Unit 1

Linear Equations with Constant Coeffi-
cients

OBJECTIVE:
After the successful completion of this unit, the students are expected to recall the ba-
sic concept of linear homogeneous and non-homogeneous differential equations with
constant coefficients. Also, the solution of initial value problems for second-order
equations. In particular, we study linear independence and dependence results using
the Wronskian formula.

1.1 Introduction

In this unit, you will learn about the basics of linear equations with constant coef-
ficients and the second order homogeneous equations. A differential equation is an
equation which contains derivatives of one or more depended variables with respect
to one or more independent variables.

A linear differential equation with constant coefficients of order n has the form

a0y
(n) + a1y

(n−1) + a2y
(n−2) + · · ·+ any = b(x), (1.1)

where a0, a1, a2, · · · , an are complex constants with a0 6= 0, and b is a complex-valued
function on an interval I.

By dividing 1.1 by a0 and assuming a0 = 1, the equation 1.1 becomes

y(n) + a1y
(n−1) + a2y

(n−2) + · · ·+ any = b(x). (1.2)

It will be more convenient to denote the differential expression on the left side of the
equation 1.2 as L(y). Thus

L(y) = y(n) + a1y
(n−1) + a2y

(n−2) + · · ·+ any, (1.3)

and the equation 1.2 becomes simply L(y) = b(x).

Definition 1.1 If b(x) = 0 for all x ∈ I, then the corresponding equation L(y) = 0 is
called a homogeneous equation, whereas if b(x) 6= 0 for some x ∈ I, then the equation
L(y) = b(x) is called a non-homogeneous equation.
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Definition 1.2 We denote L is a differential operator which operates on a function φ
which have n derivatives on I, and the value of a function L(φ) at x is given by

L(φ)(x) = φ(n)(x) + a1φ
(n−1)(x) + · · ·+ anφ(x).

As a result, we get

L(φ) = φ(n) + a1φ
(n−1) + · · ·+ anφ.

Definition 1.3 A solution of L(y) = b(x) is a function φ with n derivatives on I that
satisfy L(φ) = b.

Remark 1.1 If b is continuous on I, then it is possible to find all solutions of L(y) = b(x).

1.2 The second order homogeneous equation

First we consider the first order equation with constant coefficients

y′ + ay = 0, (1.4)

where a is a complex constant. Assume that φ is a solution of 1.4. Then

φ′ + aφ = 0

=⇒ eax(φ′ + aφ) = 0

=⇒ (eaxφ)′ = 0.

Therefore eaxφ(x) = c, for some constant c. Hence

φ(x) = ce−ax.

The constant −a in the above solution is the solution of the equation r + a = 0. We
have seen that the above method works for equation of the first order. Let us try it for
the second order homogeneous equation.

Theorem 1.1 Consider the equation

L(y) = y′′ + a1y
′ + a2y = 0, (1.5)

where a1 and a2 are constants. If r1 and r2 are distinct roots of the characteristic polyno-
mial p, where

p(r) = r2 + a1r + a2,

then the functions φ1 and φ2 defined by

φ1(x) = er1x, φ2(x) = er2x (1.6)

are solutions of L(y) = 0. If r1 is a repeated root of p, then the functions φ1 and φ2 defined
by

φ1(x) = er1x, φ2(x) = xer1x (1.7)

are solutions of L(y) = 0.
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Proof:
Let y = erx is a solution of L(y), where r is a constant. Then y′ = rerx, y′′ = r2erx.
Then 1.5 becomes

L(erx) = r2erx + a1re
rx + a2e

rx = 0

=⇒ (r2 + a1r + a2)erx = 0

=⇒ p(r)erx = 0

⇐⇒ p(r) = 0 ∵ erx 6= 0 (1.8)

Thus erx is a solution of L(y) iff r is a root of the characteristic polynomial p(r).
Since p(r) = r2 + a1r + a2 is a polynomial of degree two, it has two complex roots,
namely, r1 and r2 (by the fundamental theorem of algebra). We have the following
two cases:
Case 1: Distinct roots (r1 6= r2)
If r1 and r2 are two distinct solutions of p(r), then er1x and er2x are two distinct solu-
tions of L(y) = 0.
Case 2: Repeated roots (r1 = r2)
We have

L(erx) = p(r)erx, (1.9)

for all r and x. We recall that if r1 is a repeated root of p(r), then p(r1) = 0 and
p′(r1) = 0. Differentiating 1.9 with respect to r will give us

L

(
∂

∂r
erx
)

=
∂

∂r
(p(r)erx)

L (xerx) = p′(r)erx + p(r)xerx

= [p′(r) + xp(r)]erx.

Now substituting r = r1 in this equation we get L(xer1x) = 0, thus xer1x is another
solution in case r1 = r2.
Result:
If φ1, φ2 are any two solutions of L(y) = 0 and c1, c2 are the two constants ,then the
function φ = c1φ1 + c2φ2 is also a solution of L(y) = 0.
Proof:

L(φ) = (c1φ1 + c2φ2)′′ + a1(c1φ1 + c2φ2)′ + a2(c1φ1 + c2φ2)

= c1φ
′′
1 + c2φ

′′
2 + a1c1φ

′
1 + a1c2φ

′
2 + a2c1φ1 + a2c2φ2

= c1(φ′′1 + a1φ
′
1 + a2φ1) + c2(φ′′2 + a1φ

′
2 + a2φ2)

= c1L(φ1) + c2L(φ2)

= c1(0) + c2(0)

= 0.

Example 1.1 Find all the solutions of the equation y′′ + y′ − 2y = 0.

Solution:
Consider the equation y′′+y′−2y = 0. The characteristic polynomial is p(r) = r2+r−2.
Let p(r) = 0. Then

=⇒ r2 + r − 2 = 0⇒ r = −2, 1.
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The roots are −2, 1. Therefore every solution φ has the form φ(x) = c1e
−2x + c2e

x,
where c1and c2 are constants.

Example 1.2 Find all the solutions of the equation y′′ + ω2y = 0.

Solution:
The characteristic polynomial of the given equation y′′ + ω2y = 0 is

p(r) = r2 + ω2.

Assuming p(r) = 0, we find that the roots of this polynomial are iω and −iω. Thus,
every solution φ takes the form φ(x) = c1e

iωx + c2e
−iωx, where c1and c2 are any two

constants.
Note:

(i) Taking c1 = 1
2
, c2 = 1

2
, we see that cosωx is a solution.

(ii) Taking c1 = 1
2
i, c2 = −1

2
i, we see that sinωx is a solution.

(iii) The equation y′′ + ω2y = 0 is known as the harmonic oscillator equation and is
used to examine oscillatory behaviour in a variety of physical contexts.

Let us sum up

1. We have introduced the second order homogeneous equation.

2. We have discussed the roots of the second order homogeneous equation.

3. We have discussed the distinct and repeated roots of the characteristic polyno-
mial p and it’s solutions.

4. Finally, we solved some illustrative examples.

Check your progress

1. The equation y′′ + sin y = 0, y(0) = y(2π); is
(a) linear (b) linear homogeneous
(c) linear nonhomogeneous (d) nonlinear

2. The harmonic oscillator equation is
(a) y′′ + ω2y = 0 (b) y′′ − ωy = 0
(c) y′′ − ω2y = 0 (d) y′′ − ω3y = 0

1.3 Initial value problems for second order equations

The show that every solution of the equation

L(y) = y′′ + a1y
′ + a2y = 0. (1.10)

is a linear combination of the solutions 1.6 or 1.7 will depend on proving that the
initial value problems for this equation have unique solutions.
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Definition 1.4 An initial value problem of L(y) = 0 is a problem of finding a solution φ
satisfying

φ(x0) = α, φ′(x0) = β, (1.11)

where x0 is some real number, and α, β are given constants. Thus we specify φ and its
first derivative at some initial point x0. This problem is denoted by

L(y) = 0, y(x0) = α, y′(x0) = β. (1.12)

Theorem 1.2 (Existence Theorem)
For any real x0, and constants α, β, there exists a solution φ of the initial value problem
1.12 on −∞ < x <∞.

Proof:
We prove that there are unique constants c1, c2 such that φ = c1φ1 + c2φ2 satisfies 1.11,
where φ1, φ2 are the solutions given by 1.6 or 1.7. In order to satisfy the relations 1.11
we must have

c1φ1(x0) + c2φ2(x0) = α (1.13)
c1φ
′
1(x0) + c2φ

′
2(x0) = β (1.14)

and these equations will have a unique solution c1, c2 if the determinant

∆ =

∣∣∣∣ φ1(x0) φ2(x0)
φ′1(x0) φ′2(x0)

∣∣∣∣
= φ1(x0)φ′2(x0)− φ′1(x0)φ2(x0) 6= 0.

If r1 6= r2, then

φ1(x) = er1x, φ2(x) = er2x, φ′1(x0) = r1e
r1x0 , φ′2(x0) = r2e

r2x0

and

∆ = er1x0r2e
r2x0 − r1e

r1x0er2x0

= r2e
r1x0er2x0 − r1e

r1x0er2x0

= (r2 − r1)e(r1+r2)x0 ,

which is not zero, since e(r1+r2)x0 6= 0.
If r1 = r2, then

φ1(x) = er1x, φ2(x) = xer1x, φ′1(x0) = r1e
r1x0 , φ′2(x0) = x0r1e

r1x0 + er1x0

and

∆ = (er1x0)(x0r1e
r1x0 + er1x0)− (r1e

r1x0)(x0e
r1x0)

= er1x0x0r1e
r1x0 + er1x0er1x0 − r1e

r1x0x0e
r1x0

= er1x0x0r1e
r1x0 + e2r1x0 − r1x0e

2r1x0

= er1x0 [er1x0 + x0r1e
r1x0 − r1x0e

r1x0 ]
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= e2r1x0

6= 0.

As a result, the determinant condition is satisfied in both cases. Thus, if c1,c2 are the
unique constants satisfying 1.13 and 1.14, the function

φ = c1φ1 + c2φ2

will be the desired solution satisfying 1.11.
Note:
If b and c are any two constants, then

0 ≤ (|b| − |c|)2 = |b|2 + |c|2 − 2|b||c|
=⇒ 2|b||c| ≤ |b|2 + |c|2. (1.15)

Theorem 1.3 Let φ be any solution of L(y) = y′′ + a1y
′ + a2y = 0 on an interval I

containing a point x0. Then for all x in I

‖φ(x0)‖e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ek|x−x0|, (1.16)

where ‖φ(x)‖ =[|φ(x)|2 + |φ′(x)|2 ]1/2, k = 1 + |a1|+ |a2|.

Proof:
Let

u(x) = ‖φ(x)‖2 (1.17)
u(x) = |φ(x)|2 + |φ′(x)|2

u = φφ̄+ φ′φ̄′

u′ = |φ′φ̄+ φφ̄′ + φ′′φ̄′ + φ′φ̄′′|
|u′(x)| = |φ′(x)φ̄(x) + φ(x)φ̄′(x) + φ′′(x)φ̄′(x) + φ′(x)φ̄′′(x)|

≤ |φ′(x)||φ̄(x)|+ |φ(x)||φ̄′(x)|+ |φ′′(x)||φ̄′(x)|+ |φ′(x)||φ̄′′(x)|
≤ |φ′(x)||φ(x)|+ |φ(x)||φ′(x)|+ |φ′′(x)||φ′(x)|+ |φ′(x)||φ′′(x)|
≤ 2|φ′(x)||φ(x)|+ 2|φ′(x)||φ′′(x)|. (1.18)
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Since φ satisfies L(φ) = 0 we get φ′′ + a1φ
′ + a2φ = 0.

Hence

|φ′′(x)| ≤ |a1||φ′(x)|+ |a2||φ(x)|. (1.19)

Using 1.19 in 1.18 we have

|u′(x)| ≤ 2|φ(x)||φ′(x)|+ 2|φ′(x)|[|a1||φ′(x)|+ |a2||φ(x)|]
≤ 2|φ(x)||φ′(x)|+ 2|φ′(x)||a1||φ′(x)|+ 2|φ′(x)||a2||φ(x)|
≤ 2|φ(x)||φ′(x)|+ 2|a1||φ′(x)|2 + 2|φ′(x)||a2||φ(x)|

≤ 2|φ(x)||φ′(x)|+ 2|φ′(x)||a2||φ(x)|+ 2|a1||φ′(x)|2

≤ 2|φ(x)||φ′(x)|[ 1 + |a2| ] + 2|a1||φ′(x)|2

≤ 2(1 + |a2|)|φ(x)||φ′(x)|+ 2|a1||φ′(x)|2. (1.20)

Take b = φ(x) and c = φ′(x) in 1.15 we get the following inequality

2|φ(x)||φ′(x)| ≤ |φ(x)|2 + |φ′(x)|2.

Equation 1.20 becomes

|u′(x)| ≤ 1 + |a2|(|φ(x)|2 + |φ′(x)|2) + 2|a1||φ′(x)|2

≤ (1 + |a2|)|φ(x)|2 + (1 + |a2|)|φ′(x)|2 + 2|a1||φ′(x)|2

≤ (1 + |a2|)|φ(x)|2 + |φ′(x)|2[1 + |a2|+ 2|a1|]
≤ 2(1 + |a1|+ |a2|)[|φ(x)|2 + |φ′(x)|2]

≤ 2(1 + |a1|+ |a2|)‖φ(x)‖2

|u′(x)| ≤ 2ku(x).

This is equivalent to

−2ku(x) ≤ u′(x) ≤ 2ku(x). (1.21)

Now consider the right inequality of 1.21

u′(x) ≤ 2ku(x)

=⇒ u′ − 2ku ≤ 0.

Then it is equivalent to

e−2ku(u′ − 2ku) = (e−2kuu)′ ≤ 0.

Suppose that x > x0. If integrate from x0 to x, then we get

e−2kxu(x)− e−2kx0u(x0) ≤ 0

e−2kxu(x) ≤ e−2kx0u(x0)

u(x) ≤ u(x0)e2k(x−x0)

‖φ(x)‖2 ≤ ‖φ(x0)‖2e2k(x−x0)

7



‖φ(x)‖ ≤ ‖φ(x0)‖ek(x−x0) for x > x0. (1.22)

Similarly the left inequality of 1.21 will give us

−2ku(x) ≤ u′(x)

‖φ(x0)‖e−k(x−x0) ≤ ‖φ(x)‖ for x > x0. (1.23)

Now, combining the inequalities 1.22 and 1.23 we get

‖φ(x0)‖e−k(x−x0) ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ek(x−x0) for x > x0. (1.24)

A consideration of 1.21 for the case x < x0 together with an integration from x to x0

yields

‖φ(x0)‖ek(x−x0) ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖e−k(x−x0) for x < x0. (1.25)

Now, combining the inequalities 1.24 and 1.25 we get

‖φ(x0)‖e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ek|x−x0|.

Remark:
Geometrically the inequality 1.16 says that ‖φ(x)‖ always remains between the two
curves y = ‖φ(x0)‖ek|x−x0| and y = ‖φ(x0)‖e−k|x−x0|.

Theorem 1.4 (Uniqueness Theorem)
Let α, β be any two constants, and let x0 be any real number. On any interval I containing
x0 there exists at most one solution φ of the initial value problem

L(y) = 0, y(x0) = α, y′(x0) = β.

Proof:
Suppose that φ and ψ are two solutions of L(y) = 0. Then

L(φ) = 0, φ(x0) = α, φ′(x0) = β and
L(ψ) = 0, ψ(x0) = α, ψ′(x0) = β.

Let χ = φ− ψ. Then

L(χ) = L(φ)− L(ψ) = 0 and χ(x0) = 0, χ′(x0) = 0.

Therefore ‖χ(x0)‖ = 0. By the existence theorem we have

‖χ(x0)‖e−k|x−x0| ≤ ‖χ(x)‖ ≤ ‖χ(x0)‖ek|x−x0|. (1.26)

Thus ‖χ(x)‖ = 0, ∀x ∈ I. This implies χ(x) = 0, ∀x ∈ I. Since χ = φ− ψ, we obtain

φ(x)− ψ(x) = 0, ∀x ∈ I,
φ(x) = ψ(x), ∀x ∈ I,

=⇒ φ = ψ.

Hence proved the uniqueness theorem.
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Theorem 1.5 Let φ1, φ2 be the two solutions of L(y) = 0 given by 1.6 in case r1 6= r2, and
by 1.7 in case r1 = r2. If c1, c2 are any two constants, then the function φ = c1φ1 + c2φ2

is a solution of L(y) = 0 on −∞ < x < ∞. Conversely, if φ is any solution of L(y) =
0 on−∞ < x <∞, then there are unique constants c1, c2 such that φ = c1φ1 + c2φ2.

Proof:
First we prove φ = c1φ1 + c2φ2 is a solution of L(y).
Given φ1, φ2 are the solutions of L(y) = 0. Then L(φ1) = 0 and L(φ2) = 0.
Since L(y) = y′′ + a1y

′ + a2y and φ = c1φ1 + c2φ2, we get

L(φ) = φ′′ + a1φ
′ + a2φ

= (c1φ1 + c2φ2)′′ + a1(c1φ1 + c2φ2)′ + a2(c1φ1 + c2φ2)

= c1φ
′′
1 + c2φ

′′
2 + a1c1φ

′
1 + a1c2φ

′
2 + a2c1φ1 + a2c2φ2

= c1[φ′′1 + a1φ
′
1 + a2φ1] + c2[φ′′2 + a1φ

′
2 + a2φ2]

= c1L(φ1) + c2L(φ2)

= 0 ∵ L(φ1) = L(φ2) = 0.

Hence the function φ is a solution of L(y) = 0.
Conversely, assume that φ = c1φ1 + c2φ2 is a solution of L(y) = 0. Let x0 be any

real number and α, β be two given constants. In the proof of existence theorem we
showed that there is a solution ψ of L(y) = 0 satisfying ψ(x0) = α, ψ′(x0) = β of the
form

ψ = c1φ1 + c2φ2,

where c1, c2 are uniquely determined by α, β. By uniqueness theorem φ = ψ. Hence
the proof.

Let us sum up

1. We have discussed the existence and uniqueness theorem of the initial value
problem.

2. We have proved the two solutions of L(y) = 0, then the linear combination of
those two solutions is also a solution of L(y) = 0.

3. Finally, we solved some illustrative examples.

Check your progress

3. Consider the initial value problem, y′ = y2, y(0) = 1, (x, y) ∈ R × R. Then there
exists a unique solution of the IVP on
(a) (-∞,∞) (b) (−∞, 1) (c) (-2, 2) (d) (-1,∞)

4. The solution of the differential equation 5y′′ + 3y′ = 0 is given by
(a) y = c1e

3x + c2e
5x (b) y = c1 + c2e

− 3
5
x

(c) y = (c1 + c2x)e5x (d) y = c1e
3ix + c2e

−3ix

5. State the existence theorem for solutions of a second order initial value problem,
with constant coefficients.

6. State the uniqueness theorem for solutions of a second order initial value prob-
lem, with constant coefficients.
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1.4 Linearly dependence and independence

Definition 1.5 Two functions φ1, φ2 defined on an interval I are said to be linearly
dependent on I, if there exist two constants c1, c2, not both zero, such that

c1φ1(x) + c2φ2(x) = 0, ∀ x ∈ I.

Definition 1.6 The functions φ1, φ2 are said to be linearly independent on I, if they are
not linearly dependent there. That is, if the only constants c1, c2 such that c1φ1(x) +
c2φ2(x) = 0, ∀ x ∈ I are the constants c1 = 0, c2 = 0.

Example 1.3 The functions φ1(x) = er1x, φ2(x) = er2x are linearly independent on any
interval I.

Solution:
Suppose c1φ1(x) + c2φ2(x) = 0, ∀ x ∈ I. Then

c1e
r1x + c2e

r2x = 0, ∀ x ∈ I. (1.27)

Multiplying the above equation by e−r1x we get

c1e
0 + c2e

(r2−r1)x = 0

=⇒ c1 + c2e
(r2−r1)x = 0. (1.28)

Differentiating the last equation with respect to x we get

c2(r2 − r1)e(r2−r1)x = 0.

Since r2 − r1 6= 0 and e(r2−r1)x 6= 0 we have c2 = 0. Substituting c2 = 0 in the equation
1.28 will give us c1 = 0.

Hence φ1 and φ2 are linearly independent.

Example 1.4 The functions φ1 = er1x, φ2(x) = xer1x are linearly independent on any
interval I.

Solution:
Suppose c1φ1(x) + c2φ2(x) = 0. Then

c1e
r1x + c2xe

r1x = 0. (1.29)

Multiplying the last equation by e−r1x we get

c1e
0 + c2e

0x = 0

c1 + c2x = 0. (1.30)

Differentiating 1.30 with respect to x will give us c2 = 0. By substituting c2 = 0 in
1.30, we obtain c1 = 0.

Hence φ1 and φ2 are linearly independent.
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Definition 1.7 Let φ1 , φ2 be two solutions of L(y) = y′′+a1y
′+a2y = 0. The determinant

W (φ1, φ2) =

∣∣∣∣ φ1 φ2

φ′1 φ′2

∣∣∣∣
= φ1φ

′
2 − φ′1φ2

is called the Wronskian of φ1, φ2. It is a function, and its value at x is denoted by
W (φ1, φ2)(x).

Theorem 1.6 Two soutions φ1, φ2 of L(y) = 0 are linearly independent on an interval I
if and only if W (φ1, φ2)(x) 6= 0, ∀x ∈ I.

Proof:
Suppose that φ1, φ2 are two solutions of L(y) = 0 such that W (φ1, φ2)(x) 6= 0, ∀x ∈ I.
To prove: φ1, φ2 are linearly independent on an interval I.
Let c1, c2 be two constants such that

c1φ1(x) + c2φ2(x) = 0, ∀ x ∈ I. (1.31)

Then

c1φ
′
1(x) + c2φ

′
2(x) = 0, ∀ x ∈ I. (1.32)

Now, for a fixed x the equations 1.31 and 1.32 are linearly homogeneous equations
satisfied by c1, c2. Then the determinant of the coefficients of the equations 1.31 and
1.32 is ∣∣∣∣ φ1(x) φ2(x)

φ′1(x) φ′2(x)

∣∣∣∣ = W (φ1, φ2)(x) 6= 0, ∀ x ∈ I

Thus c1 = c2 = 0 and hence φ1, φ2 are linearly independent solutions on I.
Conversely suppose that φ1, φ2 are linearly independent on I.

To prove: W (φ1, φ2)(x) 6= 0, ∀x ∈ I.
Suppose that W (φ1, φ2)(x0) = 0 for some x0 ∈ I.
Then ∣∣∣∣ φ1(x0) φ2(x0)

φ′1(x0) φ′2(x0)

∣∣∣∣ = 0.

This implies that the system of two equations

c1φ1(x0) + c2φ2(x0) = 0 (1.33)
c1φ
′
1(x0) + c2φ

′
2(x0) = 0 (1.34)

has a solution c1, c2, where at least one of these numbers is not zero. Let c1, c2 be such a
solution and consider the function ψ = c1φ1 + c2φ2. Now L(ψ) = c1L(φ1) + c2L(φ2) = 0
and

ψ(x0) = c1φ1(x0) + c2φ2(x0)

ψ′(x0) = c1φ
′
1(x0) + c2φ

′
2(x0).
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Thus we have, L(ψ) = 0, ψ(x0) = 0, ψ′(x0) = 0. By uniqueness theorem ψ is
the unique solution of the initial value problem, L(y) = 0, y(x0) = 0, y′(x0) = 0.
Therefore ψ(x) = 0, ∀x ∈ I and thus c1φ1(x) + c2φ2(x) = 0,∀x ∈ I.
Then we have c1 and c2 are not both zero such that

c1φ1(x) + c2φ2(x) = 0, ∀x ∈ I,

which is a contradiction to the fact that φ1 and φ2 are lineraly independent. Therefore
W (φ1, φ2)(x) 6= 0, ∀x ∈ I.

Theorem 1.7 Let φ1, φ2 be two solutions of L(y) = 0 on an interval I and let x0 be any
point in I. Then φ1, φ2 are lineraly independent on I if and only if W (φ1, φ2)(x) 6= 0.

Proof:
Suppose that φ1, φ2 are linearly independent solutions of L(y) = 0 on I.
Then by theorem (1.6)
W (φ1, φ2)(x) 6= 0,∀x ∈ I.
Since, x0 in I, then we have W (φ1, φ2)(x0) 6= 0.
Conversely,
Suppose W (φ1, φ2)(x) 6= 0.
To prove:
φ1, φ2 are linearly independent.
Let c1 and c2 be any two constants such that

c1φ1(x) + c2φ2(x) = 0

c1φ
′
1(x) + c2φ

′
2(x) = 0

∀x ∈ I.
In particular ,

c1φ1(x0) + c2φ2(x0) = 0

c1φ
′
1(x0) + c2φ

′
2(x0) = 0.

Then the determinant of coefficient in the above equation,∣∣∣∣ φ1(x0) φ2(x0)
φ′1(x0) φ′2(x0)

∣∣∣∣ = W (φ1, φ2)(x0) 6= 0

=⇒ c1 = c2 = 0.
Therefore φ1 and φ2 are linearly independent on I.

Theorem 1.8 Let φ1 , φ2 be any two linearly independent solutions of L(y) = 0 on an
interval I. Every solution φ of L(y) = 0 can be written uniquely as φ = c1φ1 +c2φ2, where
c1, c2 are constants.

Proof:
Given φ = c1φ1 + c2φ2 be solution of L(y) = 0, where c1, c2 are constants. Let x0 be any
point in I. Since φ1, φ2 are linearly independent on I, we have W (φ1, φ2)(x0) 6= 0. Let
φ(x0) = α, φ′(x0) = β, and consider the two equations,

c1φ1(x0) + c2φ2(x0) = α

12



c1φ
′
1(x0) + c2φ

′
2(x0) = β,

where c1, c2 are constants. Since the determinant of the coefficients of c1, c2 is

W (φ1, φ2)(x0) 6= 0,

there is a unique pair of constants c1, c2 satisfying these equations. Choose c1, c2 to be
these constants. Then the function ψ = c1φ1 + c2φ2 is such that

ψ(x0) = φ(x0), ψ′(x0) = φ′(x0), and L(ψ) = 0.

From the uniqueness theorem it follows that ψ = φ on I, that is, φ = c1φ1 + c2φ2.
Note:

The importance of the previous theorem is that we need only to find any two
linearly independent solution on of L(y) = 0 in order to obtain all solution of L(y) = 0.
For example, the equation y′′ + y = 0 has the two solution eix, e−ix, which are linearly
independent, but it also has the two linearly independent solutions cosx, sinx.

1.4.1 A formula for the Wronskian

Theorem 1.9 If φ1, φ2 are two solutions of L(y) = 0 on an interval I containing a point
x0, then

W (φ1, φ2)(x) = e−a1(x−x0)W (φ1, φ2)(x0).

Proof:
Consider L(y) = y′′ + a1y

′ + a2y = 0.
Since φ1 and φ2 are solutions of L(y) = 0, we have L(φ1) = 0 and L(φ2) = 0. Then

φ′′1 + a1φ
′
1 + a2φ1 = 0 (1.35)

φ′′2 + a2φ
′
2 + a2φ2 = 0. (1.36)

Multiply equation 1.35 by −φ2 will give us

=⇒ −φ′′1φ2 − a1φ
′
1φ2 − a2φ1φ2 = 0. (1.37)

Multiply equation 1.36 by −φ1 will give us

=⇒ φ′′2φ1 + a1φ1φ
′
2 + a2φ1φ2 = 0. (1.38)

Adding 1.37 and 1.38, we get

(φ′′2φ1 − φ′′1φ2) + a1(φ1φ
′
2 − φ′1φ2) = 0. (1.39)

Let W = W (φ1, φ2) =

∣∣∣∣ φ1 φ2

φ′1 φ′2

∣∣∣∣ = φ1φ
′
2 − φ′1φ2 and W ′(φ1, φ2) = φ1φ

′′
2 − φ′′1φ2. Then

equation 1.39 becomes
W ′ + a1W = 0,

and W satisfies the first order equation. Thus

W (x) = ce−a1x,
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where c is some constant. Let x = x0. Then

W (x0) = ce−a1x0 ,

or
c = ea1x0W (x0),

and

W (x) = ea1x0e−a1xW (x0)

W (x) = e−a1(x−x0)W (x0).

Hence proved.
Let us sum up

1. We have defined the linearly dependent and independent of a function with some
examples.

2. We have discussed the Wronskian definition and formula.

3. We have stated and proved Abel’s formula theorem.

4. Finally, we figured out some illustrative examples.

Check your progress

7. Which of the following are linearly independent functions.

(a) φ1(x) = x, φ2(x) = erx, r is a complex constant,

(b) φ1(x) = cos x, φ2(x) = 3(eix + e−ix)

(c) φ1(x) = x2, φ2(x) = 5x2

(d) φ1(x) = sinx, φ2(x) = 4i(eix − e−ix)

8. The Wronskian of the functions φ1(x) = x2, φ2(x) = 5x2 is
(a) -2 (b) -1 (c) 0 (d) 3

9. Define linear independence and dependence.

10. Define Wronskian of two functions φ1 and φ2.

1.5 The non-homogeneous equation of order two

Theorem 1.10 Let b be continuous on an interval I. Every solution ψ of L(y) = b(x) on
I can be written as ψ = ψp + c1φ1 + c2φ2 where ψp is a particular solution. φ1, φ2 are two
linearly independent solutions of L(y) = 0, and c1, c2 are constants. A particular solution
ψp is given by

ψp(x) =

∫ x

x0

[φ1(t)φ2(x)− φ1(x)φ2(t)]b(t)

W (φ1, φ2)(t)
dt

conversely every such ψis a solution of L(y) = b(x).
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Proof: Consider the non-homogeneous equation of order two

L(y) = y′′ + a1y
′ + a2y = b(x),

where b is some continuous function on an interval I. Suppose we know that ψp is a
particular solution of this equation, and that ψ is any other solution. Then,

ψ = ψp + c1φ1 + c2φ2

ψ − ψp = c1φ1 + c2φ2

L(ψ − ψp) = c1L(φ1) + c1L(φ2)

L(ψ)− L(ψp) = b− b = 0.

This shows that ψ − ψp is a solution of the homogenous equation L(y) = 0.
Therefore φ1 and φ1 are linear independent solutions of L(y) = 0, there are unique
constants such that ψ − ψp = c1φ1 + c2φ2

ψ = ψp + c1φ1 + c2φ2.

In other words, every solution ψ of L(y) = b(x) can be written in the form

ψ = ψp + c1φ1 + c2φ2.

We see that the problem of finding all solutions of L(y) = b(x) reduces to finding a
particular one ψp and two linearly independent solution φ1, φ2 of L(y) = 0.
If L(ψp) = b and L(φ1) = L(φ2) = 0 and c1, c2 are any constants, then
ψ = ψp + c1φ1 + c2φ2 satisfies L(φ) = b.
To find a particular solution of L(y) = b(x) we reason in the following way.
Every solution of L(y) = 0 is of the form c1φ1 + c2φ2 where c1, c2 are constants and
φ1, φ2 are linearly independent solutions.
Such a function c1φ1 + c2φ2 can not be a solution of L(y) = b(x) unless b(x) = 0 on I.
However, suppose we allow c1, c2 to u1, u2 (not necessarily constants) on I, and then
ask whether there is a solution of L(y) = b(x) of the form u1φ1 + u2φ2 on I.
This procedure is known as the Variation of constants.
We have a solution of L(y) = b(x) of the form u1φ1 + u2φ2 where u1, u2 are functions.

L(y) = y′′ + a1y
′ + a2y = b(x).

L(u1φ1 + u2φ2) =(u1φ1 + u2φ2)′′ + a1(u1φ1 + u2φ2)′ + a2(u1φ1 + u2φ) = b(x)

=(u′1φ1 + u1φ
′
1 + u′2φ2 + u2φ

′
2)′ + a1(u1φ

′
1 + u′1φ1 + u2φ

′
2 + u′2φ2)

+ a2(u1φ1 + u2φ2) = b(x)

=u′1φ
′
1 + u′′1φ1 + u′1φ

′
1 + u1φ

′′
1 + u′′2φ2 + u′2φ

′
2 + u2φ

′′
2 + u′2φ

′
2

+ a1(u1φ
′
1 + u′1φ1 + u2φ

′
2 + u′2φ

′
2) + a2(u1φ1 + u2φ2) = b(x)

=u1[φ′′1 + a1φ
′
1 + a2φ1] + u2[φ′′2 + a1φ

′
2 + a2φ2] + 2[u′1φ

′
1 + u′2φ

′
2]

+ a1[u′1φ1 + u′2φ2] + u′′1φ1 + u′′2φ2 = b(x)

u1L(φ1) + u2L(φ2) + u′′1φ1 + u′′2φ2 + u′′2φ2 + 2[u′1φ
′
1 + u′2φ

′
2] + a1[u′1φ1 + u′2φ2] = b
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Since φ1, φ2 are solutions of L(y) = 0
L(φ1) = 0 and L(φ2) = 0

u′′1φ1 + u′′2φ2 + 2[u′1φ
′
1 + u′2φ

′
2] + a1[u′1φ1 + u′2φ2] = b (1.40)

if

u′1φ1 + u′2φ2 = 0 (1.41)

Differentiate with respect to x

u′′1φ1 + u′1φ
′
1 + u′′2φ2 + u′2φ

′
2 = 0

u′′1φ1 + u′′2φ2 = −(u′1φ
′
1 + u′2φ

′
2).

Substitute (1.42) and the above equations in (1.41)

u′1φ
′
1 + u′2φ

′
2 = b (1.42)

(6.2)∗φ′1 =⇒ u′1φ1φ
′
1 + u′2φ2φ

′
1 = 0

(6.4)∗φ1 =⇒ u′1φ
′
1φ1 + u′2φ

′
2φ1 = bφ1

subtracting the equations we get

− u′2(φ′2φ1 + φ2φ
′
1) = −φ1b

− u′2.W (φ1, φ2) = −φ1b

u′2 =
φ1b

W (φ1, φ2)
, (1.43)

substitute (1,44) in (1.42)

u′1φ1 + u′2φ2 = 0

u′1φ1 +
φ1b

W (φ1, φ2)
φ2 = 0

u′1φ1 = − φ1b

W (φ1, φ2)
φ2

u′1 = − b

W (φ1, φ2)
φ2. (1.44)

In order to obtain u1, u2 all we have to do is to integrate.
Let x0 ∈ I and x > x0 Now integrate from x0 to x,

u2 =

∫ x

x0

φ1(t)b(t)

W (φ1, φ2)(t)
dt

u1 = −
∫ x

x0

φ2(t)b(t)

W (φ1, φ2)(t)
dt.

We know that the particular integral is

ψp = u1φ1(x) + u1φ1(x)
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ψp = −
∫ x

x0

φ2(t)b(t)

W (φ1, φ2)(t)
dtφ1(x) +

∫ x

x0

φ1(t)b(t)

W (φ1, φ2)(t)
dtφ2(x)

ψp(x) =

∫ x

x0

φ1(t)φ2(x)− φ2(t)φ1(x)

W (φ1, φ2)(t)
b(t)dt.

Hence proved the theorem.

Example 1.5 Solve L(Y ) = b(x) in the case p(r) = r2 + a1r + a2 has two distinct roots
r1, r2.

Solution:
Let L(y) = y′′ + a1y

′ + a2y = b(x). Given p(r) = r2 + a1r + a2 has two distinct roots
r1, r2. Therefore φ1(x) = er1x and φ2(x) = er2x are solutions of L(y) = 0. The particular
solution ψp of L(y) = b(x) is of the form

ψp =

∫ x

x0

φ1(t)φ2(x)− φ2(t)φ1(x)

W (φ1, φ2)(t)
b(t)dt.

Here φ1(t) = er1t and φ2(t) = er2t

W (φ1, φ2)(t) =

∣∣∣∣ φ1(t) φ2(t)
φ′1(t) φ2′(t)

∣∣∣∣
=

∣∣∣∣ er1t er2t

r1e
r1t r2e

r2t

∣∣∣∣
= r2e

r2ter1t − r1e
r1ter2t

= r2e
(r1+r2)t − r1e

(r1+r2)t

= e(r1+r2)t(r2 − r1)

ψp =

∫ x

x0

er1ter2x − er1xer2t

e(r1+r2)t(r2 − r1)
b(t)dt

=
1

r2 − r1

∫ x

x0

[er1ter2x − er1xer2t]e−(r1+r2)tb(t)dt

=
1

r2 − r1

∫ x

x0

[er2x−r2t − er1x−r1t]b(t)dt

ψp =
1

r2 − r1

∫ x

x0

[er2(x− t)− er1(x− t)]b(t)dt.

The complete solution is

ψ = φp + c1φ1 + c2φ2

ψ =
1

r2 − r1

∫ x

x0

[er2(x− t)− er1(x− t)]b(t)dt+ c1e
r1x + c2e

r2x.

Note:
Suppose we have the solution of L(y) = b(x) of the form u1φ1 + u2φ2 where u1, u2 are
functions. Then u′1, u

′
2 satisfy the equation,

φ1u
′
1 + φ2u

′
2 = 0 and φ′1u

′
1 + φ′2u

′
2 = b.
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Let us sum up

1. We have characterized the non-homogeneous equation of order two.

2. We have rectified the particular solution of the non-homogeneous equation of
order two using the Wronskian formula.

3. Finally, we figured out some illustrative examples.

Check your progress

11. If φ1 and φ2 are any two solutions of y′′ + a1y
′ + a2y = b(x), where a1, a2 are

constants and b(x) is continuous function on I, then which of the following is a
solution of the corresponding homogeneous equation?
(a) φ1 + φ2 (b) φ1 − φ2 (c) ψp(x) + φ1 + φ2 (d) None of these

12. The equation is y′′ + yy′ = x2

(a) linear (b) nonlinear (c) quasi linear (d) semi-linear

Summary
The focus shifts to solving linear ODEs with constant coefficients, with an emphasis

on finding general solutions. Topics covered are:

• The concept of the characteristic equation is introduced to find general solutions.

• Distinct real roots, repeated roots, and complex roots.

• Explores second-order linear differential equations, both homogeneous and non-
homogeneous.

• An initial values problem for the second order equation consist of finding a solu-
tion of the differential equation that also satisfies initial conditions.

• Introduction to Wronskian and its use in determining linear dependence and
independence of solutions.

• Solving non-homogeneous equations using the method of variation of parame-
ters.

Glossary

• Differential equation: An equation which contains derivatives of one or more
depended variables with respect to one or more independent variables.

• Linear homogeneous second order equation: A linear homogeneous second order
equation with variable coefficients can be written as, y′′ + a1(x)y

′
+ a2(x)y = 0,

where a1(x) and a2(x) are continuous functions on the interval [a, b].

• Linearly dependent: When there is non-zero constants c1 and c2 for which the
given equation will also be true for all x then we call the two functions linearly
dependent.
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• Linearly independent: When there is only two constants for which the given equa-
tion is true for c1 = 0 and c2 = 0 then we call the functions linearly independent.

• Wronskian: The Wronskian is a determinant used to check if functions are lin-
early independent. If the Wronskian is non-zero, the functions are independent;
if zero, they might be dependent.

Self-assessment questions

1. The set of linearly independent solutions of the differential equations d4y
dx4
− d2y

dx2
=

0 is
(a) {1, x, ex, e−x} (b) {1, x, e−x, xe−x}
(c) {1, x, ex, xex} (d) {1, x, ex, xe−x}

2. The solution of the differential equation y′′ + y = 0 satisfying the
condition y(0) = 1, y(π

2
) = 2 is

(a) φ = cosx+ 2 sinx (b) φ = cosx+ sinx
(c) φ = 2 cos x+ sinx (d) φ = 2 cos x+ 2 sinx

3. Let φ1 and φ2 defined on [0,1] be twice continuously differentiable functions
satisfying y′′ + y′ + y = 0. Let W (x) be the Wronskian of φ1 and φ2 and satisfy
W (1

2
) = 0. Then

(a) W (x) = 0 for x ∈ [0, 1] (b) W (x) 6= 0 for x ∈ [0, 1]
(c) W (x) > 0 for x ∈ (1

2
, 1] (d) None of these.

4. Consider the ordinary differential equation y′′ + P (x)y′ + Q(x)y = 0, where P
and Q are smooth functions. Let φ1 and φ2 be any two solutions of the above
equation. Let W be the corresponding Wronskian. Which of the following is
always true?
(a) If φ1 and φ2 are linearly dependent then there exist x1,x2 such that W (x1) = 0
and W (x2) 6= 0.
(b) If φ1 and φ2 are linearly independent then W (x) = 0 ∀x
(c) If φ1 and φ2 are linearly dependent then W (x) 6= 0 ∀x
(d)If φ1 and φ2 are linearly independent then W (x) 6= 0 ∀x

5. Let φ1 and φ2 form a complete set of solutions to the differential equation y′′ −
2xy′ + sin(e2x2)y = 0, x ∈ [0, 1] with φ1(0) = 0, φ′1(0) = 1, φ2(0) = 1, φ′2(0) = 1.
The Wronskian W (x) of φ1(x) and φ2(x) at x = 0 is
(a)e2 (b)−e−1 (c)−e2 (d)e

6. Which of the following are linearly independent functions.

(a) φ1(x) = x, φ2(x) = erx, r is a complex constant,

(b) φ1(x) = cos x, φ2(x) = 3(eix + e−ix)

(c) φ1(x) = x2, φ2(x) = 5x2

(d) φ1(x) = sinx, φ2(x) = 4i(eix − e−ix)

7. Consider the initial value problem in R2, y′(t) = Ay + By; y(0) = y0, where

A =

[
1 0
−1 1

]
, B =

[
1 −1
0 1

]
. Then y(t) is given by

(a) e−tAetBy0 (b) etBetAy0 (c) et(A+B)y0 (d) e−t(A+B)y0
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8. Let V be the set of all bounded solution of the ODE y′′(x) − 4y′(x) + 3y(x) = 0,
x ∈ R. Then V

(a) is a real vector space of dimension 2.

(b) is a real vector space of dimension 1.

(c) contains only the trivial solution.

(d) contains exactly two solutions.

9. Let φ1 and φ2 defined on [0,1] be twice continuously differentiable functions
satisfying y′′ + y′ + y = 0. Let W (x) be the Wronskian of φ1 and φ2 and satisfy
W (1

2
) = 0. Then

(a) W (x) = 0 for x ∈ [0, 1] (b) W (x) 6= 0 for x ∈ [0, 1]
(c) W (x) > 0 for x ∈ (1

2
, 1] (d) None of these.

10. If φ1,φ2 are linearly independent with two solution L(y) = 0 on interval I and x0

be any point on I if and only if,
(a)W (φ′1, φ

′
2) 6= 0 (b)W (φ1, φ2) 6= 0

(c)W (φ′1, φ
′
2) = 0 (d)W (φ1, φ2) = 0

EXERCISES

1. Find all solutions of the following equations:

(a) y′′ − 4y = 0

(b) 3y′′ + 2y′ = 0

(c) y′′ + 16y = 0

(d) y′′ = 0

(e) y′′ + 2iy′ + y = 0

(f) y′′ − 4y′ + 5y = 0

(g) y′′ + (3i− 1)y′ − 3iy = 0.

2. Consider the equation y′′ + y′ − 6y = 0.

(a) Compute the solution φ satisfying φ(0) = 1, φ′(0) = 0.

(b) Compute the solution ψ satisfying ψ(0) = 0, ψ′(0) = 1.

(c) Compute φ(1) and ψ(1).

3. Find all solutions φ of y′′ + y = 0 satisfying:

(a) φ(0) = 1, φ(π/2) = 2

(b) φ(0) = 0, φ(π) = 0

(c) φ(0) = 0, φ′(π/2) = 0

(d) φ(0) = 0, φ(π/2) = 0.

4. Consider the equation y′′ + k2y = 0, where k is a non-negative constant.
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(a) For what values of k will there exist non-trivial solutions φ satisfying
(i) φ(0) = 0, φ(π) = 0,
(ii) φ′(0) = 0, φ′(π) = 0,
(iii) φ(0) = φ(π), φ′(0) = φ′(π),
(iv) φ(0) = −φ(π), φ′(0) = −φ′(π)?.

(b) Find the non-trivial solutions for each of the cases (i)-(iv) in (a).

5. Find the solutions of the following initial value problems:
(a) y′′ − 2y′ − 3y = 0, y(0) = 0, y′(0) = 1,
(b) y′′ + (4i+ 1)y′ + y = 0, y(0) = 0, y′(0) = 0,
(c) y′′ + (3i− 1)y′ − 3iy = 0, y(0) = 2, y′(0) = 0,
(d) y′′ + 10y = 0, y(0) = π, y′(0) = π2.

6. Let I be the interval 0 < x < 1. Find a function φ which has a continuous
derivative on −∞ < x <∞, which satisfies

y′′ = 0 ∈ I
y′′ + k2y = 0 outside I, (k > 0),

and which has the form

φ(x) = eikx + Ae−ikx, (x ≤ 0),

and
φ(x) = Beikx, (x ≥ 1).

Determine φ by computing the constants A and B, and its values in I.

7. The functions φ1, φ2 defined below exist for −∞ < x < ∞. Determine whether
they are linearly dependent or independent there.

(a) φ1(x) = x, φ2(x) = erx, r is a complex constant

(b) φ1(x) = cos x, φ2(x) = sinx

(c) φ1(x) = x2, φ2(x) = 5x2

(d) φ1(x) = sinx, φ2(x) = eix

(e) φ1(x) = cos x, φ2(x) = 3(eix + e−ix)

(f) φ1(x) = x, φ2(x) = |x|.

8. Are the following statements true or false ? If the statement is true, prove it; if it
is false, give a counterexample showing it is false.

(a) "If φ1, φ2 are linearly independent functions on an interval I, they are lin-
early independent on any interval J contained inside I."

(b) "If φ1, φ2 are linearly dependent on an interval I, they are linearly dependent
on any interval J contained inside I."

(c) "If φ1, φ2 are linearly independent solutions of L(y) = 0 on an interval I,
they are linearly independent on any interval J contained inside I."
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(d) "If φ1, φ2 are linearly dependent solutions of L(y) = 0 on an interval I, they
are linearly dependent on any interval J contained inside I."

9. (a) Show that the functions φ1, φ2 defined by

φ1(x) = x2, φ2(x) = x|x|,

are linearly independent for −∞ < x <∞.

(b) Compute the Wronskian of these functions.

(c) Do the results of parts (a) and (b) contradict Theorem 1.6? Explain your
answer.

10. (a) Let φn be any function satisfying the boundary value problem

y′′ + n2y = 0, y(0) = y(2π), y′(0) = y′(2π), (1.45)

where n = 0, 1, 2, · · ·. Show that∫ 2π

0

φn(x)φm(x)dx = 0

if n 6= m. (Hint: −φ′′n = n2φn,and −φ′′m = m2φm.Thus

(n2 −m2)φnφm = φnφ
′′
m − φmφ′′n = [φnφ

′
m − φmφ′n]′.

Integrate this equality from 0 to 2π, and use the boundary conditions satis-
fied by φn and φm).

(b) Show that cosnx and sinnx are functions satisfying the boundary value
problem 1.45. The result of (a) then implies that∫ 2π

0

cosnx cosmxdx = 0,

∫ 2π

0

cosnx sinmxdx = 0,∫ 2π

0

sinnx sinmxdx = 0, (n 6= m).

11. (a) Show that φn(x) = sinnx satisfies the boundary value problem

y′′ + n2y = 0, y(0) = 0, y(π) = 0,

where n = 1, 2, · · ·.
(b) Using (a) show that ∫ π

0

sinnx sinmxdx = 0,

if n 6= m. (Hint: See, Ex. 5 (a)).

(c) Prove that for any positive integer n, φ1, · · ·, φn are linearly independent on
0 ≤ x ≤ π. (Hint: Suppose a1φ1 + · · · + anφn = 0. Multiply both sides of
equality by φk (k fixed between 1 and n) and integrate from 0 to 2π. Use
(b)).
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12. Let φ1, φ2, be two differentiable functions on an interval I, which are not neces-
sarily solutions of an equation L(y) = 0. Prove the following:

(a) If φ1, φ2 are linearly dependent on I, then W (φ1, φ2)(x) = 0 for all x in I.

(b) If W (φ1, φ2)(x) 6= 0 for some x0 in I, then φ1, φ2 are linearly independent on
I.

(c) W (φ1, φ2)(x) = 0 for all x in I does not imply that φ1, φ2 are linearly depen-
dent on I.

(d) W (φ1, φ2)(x) = 0 for all x in I, and φ2(x) 6= 0 on I, imply that φ1, φ2 are
linearly dependent on I. (Hint: Compute (φ1

φ2
)′).

13. Find all solutions of the following equations:

(a) y′′ + 4y = cosx

(b) y′′ + 9y = sin 3x

(c) y′′ + y = tanx, (−π/2 < x < π/2)

(d) y′′ + 2iy′ + y = x

(e) y′′ − 4y′ + 5y = 3e−x + 2x2

(f) y′′ − 7y′ + 6y = sinx

(g) y′′ + y = 2 sin x sin 2x

(h) y′′ + y = secx, (−π/2 < x < π/2)

(i) 4y′′ − y = ex

(j) 6y′′ + 5y′ − 6y = x.

14. Let L(y) = y′′ + a1y
′ + a2y, where a1, a2 are constants, and let p be the character-

istic polynomial p(r) = r2 + a1r + a2.

(a) If A, α are constants, and p(α) 6= 0, show that there is a solution φ of L(y) =
Aeax of the form φ(x) = Beax, where B is a constant. (Hint: Compute
L(Beax)).

(b) Compute a particular solution of L(y) = Aeax in case p(α) = 0 (Hint: If B, r
are constants compute L(Bxerx), and then let r = α).

(c) If φ, ψ are solutions of

L(y) = b1(x), L(y) = b2(x),

respectively, on some interval I, show that χ = φ+ ψ is a solution of

L(y) = b1(x) + b2(x)

on I.

(d) Suppose A1, A2, α1, α2 are constants, and p(α1) 6= 0, p(α2) 6= 0. Find a
solution of

L(y) = A1e
α1x + A2e

α2x.
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15. Consider
L(y) = y′′ + a1y

′ + a2y,

where a1, a2 are real constants. Let A, ω be real constants such that p(iω) 6= 0,
where p is the characteristic polynomial.

(a) Show that the equation L(y) = Aeiωx has a solution φ given by

φ(x) =
A

|p(iω)|
ei(ωx−α),

where p(iω) = |p(iω)|eiα.

(b) If φ is any solution of L(y) = Aeiωx, show that φ1 = Re φ, φ2 = Im φ are
solutions of

L(y) = A cosωx, L(y) = A sinωx,

respectively.

(c) Using (a), (b) show that there is a particular solution φ of

Ly′′ +Ry′ +
1

C
y = E cosωx,

where L,R,C,E, ω are positive constants, which has the form φ(x) = B cos(ωx−
α). (Note: L is a constant here, and not a differential operator.)

(d) Suppose that R2C < 2L in (c). For what value of ω is B a maximum? (Note:
This ω is often referred to as the resonance ω).

16. Consider the equation y′′ + ω2y = A cosωx, where A, ω are positive constants.

(a) Find all solutions on 0 ≤ x ≤ ∞.

(b) Show that every solution φ is such that |φ(x)| assumes arbitrarily large val-
ues as x→∞.

(c) Sketch the graph of that solution φ satisfying φ(0) = −0, φ′(0) = 1.

Answers for check your progress
1. (d) 2. (a) 3. (a) 4. (b)
5. For any real x0, and constants α, β, there exists a solution φ of the initial value

problem L(y) = 0, y(x0) = α, y′(x0) = β. on −∞ < x <∞.
6. Let α, β be any two constants, and let x0 be any real number. On any interval I

containing x0 there exists at most one solution φ of the initial value problem

L(y) = 0, y(x0) = α, y′(x0) = β.

7. (a) 8. (c)
9. Linearly dependent : Two functions φ1, φ2 defined on an interval I are said to

be linearly dependent on I, if there exist two constants c1, c2, not both zero, such that

c1φ1(x) + c2φ2(x) = 0, ∀ x ∈ I.
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Linearly independent : The functions φ1, φ2 are said to be linearly independent on I,
if they are not linearly dependent there. That is, if the only constants c1, c2 such that
c1φ1(x) + c2φ2(x) = 0, ∀ x ∈ I are the constants c1 = 0, c2 = 0.

10. Let φ1 , φ2 be two solutions of L(y) = y′′ + a1y
′ + a2y = 0. The determinant

W (φ1, φ2) =

∣∣∣∣ φ1 φ2

φ′1 φ′2

∣∣∣∣
= φ1φ

′
2 − φ′1φ2

is called the Wronskian of φ1, φ2. It is a function, and its value at x is denoted by
W (φ1, φ2)(x).

11. (a) 12. (b)

Suggested Readings

1. Williams E. Boyce and Richard C. DiPrima, Elementary Differential Equations
and Boundary Value Problems, John Wiley and sons, New York, 1967.

2. W. T. Reid, Ordinary Differential Equations, John Wiley and Sons, New York,
1971.

3. Ross, S. L. Differential Equations, 3rd ed. New York: John Wiley and Sons, 1984.
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Unit 2

Linear Equations with Constant Coeffi-
cients (Continued)

OBJECTIVE:
After going through this unit, you will be able to understand the homogeneous and
non-homogeneous equations of order n. Also, we prove the existence and unique-
ness results of initial value problems for nth order equations. Further, we discuss the
annihilator method for solving the non-homogeneous equation.

2.1 The homogeneous equation of order n

The work we have completed for the second order equation can be applied to the
equation of order n as well. Now, let L(y) be defined as

L(y) = y(n) + a1y
(n−1) + a2y

(n−2) + · · ·+ any,

where a1, a2, · · · , an are constants. We attempt to solve L(y) = 0 using the exponential
erx. We get

L(erx) = p(r)erx, (2.1)

where
p(r) = rn + a1r

n−1 + a2r
n−2 + · · ·+ an.

We refer to p as the characteristic polynomial of L. If r1 is a root of p, then L(er1x) = 0,
implying a solution er1x. Suppose r1 is a root of multiplicity m1 of p. Then

p(r1) = 0, p′(r1) = 0, · · · , p(m1−1)(r1) = 0. (2.2)

If we differentiate the equation 2.1 k times with respect to r, we get

∂k

∂rk
L(erx) = L(

∂k

∂rk
erx) = L(xkerx)

=

[
p(k)(r) + kp(k−1)(r)x+

k(k − 1)

2!
p(k−2)(r)x2 + . . .+ p(r)xk

]
erx.
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For k = 0, 1, · · · ,m1 − 1, we observe that xker1x is a solution of L(y) = 0. If k=1 and
r = r1, then L(xer1x) = p′(x1)er1x + xp(r1)er1x = 0.
Therefore xer1x is a solution of L(y) = 0. If k = 2 and r = r1,

L(x2er1x) = p′(r1)er1x + 2xp′(r1)er1x + x2p(r1)er1x

= 0.

Therefore x2er1x is a solution of L(y) = 0.
Similarly L[xker1x] = 0 for k = 0, 1, 2, · · · (m1−1). Therefore er1x, xer1x, · · · , xm1−1er1x

are solutions of L(y) = 0. Repeating this for each root r2, r3, · · · , rs with multiplicity
m2,m3, · · · ,ms we get

er2x, xer2x, x2er2x, · · · , xm2−1er2x;

er3x, xer3x, x2er3x, · · · , xm3−1er3x;
...

ersx, xersx, x2ersx, · · · , xms−1ersx.

Hence the following result.

Theorem 2.1 Let r1, r2, · · · , rs be the distinct roots of the characteristic polynomial p,
and suppose ri has multiplicity mi (thus m1 +m2 + . . .+ms = n). Then the n functions

er1x, xer1x, · · · , xm1−1er1x;

er2x, xer2x, · · · , xm2−1er2x; · · · ;

ersx, xersx, · · · , xms−1ersx;

are solutions of L(y) = 0.

Definition 2.1 The n functions φ1, · · · , φn on an interval I are said to be linearly depen-
dent on I if there are constants c1, c2, · · · , cn not all zero, such that

c1φ1(x) + · · ·+ cnφn(x) = 0,

for all x in I. The functions φ1, φ2, · · · , φn are said to be linearly independent on I if they
are not linearly dependent on I.

Theorem 2.2 The n solutions of L(y) = 0 given in Theorem 2.1 are linearly independent
on any interval I.

Proof:
Suppose we have n constants cij (for i = 1, . . . , s and j = 0, . . . ,mi − 1) such that

s∑
i=1

mi−1∑
j=0

cijx
jerix = 0 (2.3)

on I. Summing over j for fixed i, we let

Pi(x) =

mi−1∑
j=0

cijx
j (2.4)
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be the polynomial coefficient of erix in 2.3. Thus we have

P1(x)er1x + P2(x)er2x + · · ·+ Ps(x)ersx = 0 (2.5)

on I.
Claim: All the cij are zero

Assume that not all the constants cij are zero. Then there will be at least one of the
polynomials Pi which is not identically zero on I. Assume that ps(x) is not identically
zero on I.
Multiplying equation 2.5 by e−r1x, we get

P1(x) + P2(x)e(r2−r1)x + · · ·+ Ps(x)e(rs−r1)x = 0 (2.6)

Upon differentiating 2.6 sufficiently many times (at most m1 times), we can reduce
P1(x) = 0. In this process the degree of the polynomials multiplying e(rs−r1)x remain
unchanged, as well as the non-identically vanishing character of any of these polyno-
mials. We obtain an expression of the form

Q1(x)e(r2−r1)x + · · ·+Qs(x)e(rs−r1)x = 0,

or
Q1(x)er2x + · · ·+Qs(x)ersx = 0

on I, where the Qi are polynomials, degQi = degPi, and Qs does not vanish identi-
cally. Continuing this process, we finally arrive at a situation where

Rs(x)ersx = 0 (2.7)

on I, and Rs is a polynomial, degRs = degPs, which does not vanish identically on I.
But 2.7 implies that Rs(x) = 0 for all x on I. This contradiction forces us to abandon
the supposition that Ps is not identically zero. Thus Ps(x) = 0 for all x in I, and
we have shown that all the constants cij = 0, proving that the n solutions given in
Theorem 2.1 are linearly independent on any interval I.

If φ1, . . . , φm are any m solutions of L(y) = 0 on an interval I, and c1, . . . , cm are
any m constants, then

φ = c1φ1 + · · ·+ cmφm

is also a solution since

L(φ) = c1L(φ1) + · · ·+ cmL(φm) = 0.

As in the case n = 2 every solution of L(y) = 0 is a linear combination of n linearly
independent solutions. The proof of this fact depends on the uniqueness of solutions
to initial value problems.

Example 2.1 Find the solutions of the equation

y′′′ − 3y′ + 2y = 0.
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Solution:
The characteristic polynomial is p(r) = r3 − 3r + 2. The roots of the characteris-
tic polynomial are 1, 1,−2. Thus, three linearly independent solutions are given by
ex, xex, and e−2x. Any solution φ(x) of the given differential equation has the
form φ(x) = (c1 + c2x)ex + c3e

−2x, where c1, c2, and c3 are any constants.

Let us sum up

1. We have characterized the homogeneous equation of order n.

2. We have defined the linearly dependent and linearly independent homogeneous
equations of order n.

3. We have rectified the properties of the homogeneous equation of order n.

4. Finally, we figured out some illustrative examples.

Check your progress

1. The differential equation whose linearly independent solutions are cos 2x, sin 2x
and e−x is,
(a) y′′′ + y′′ + 4y′ = 0 (b) y′′′ + y′′ + 4y′ + 4 = 0
(c) y′′′ − y′′ + 4y′ − 4 = 0 (d) y′′′ − y′′ − 4y′ + 4 = 0

2. The general solution for the equation, y′′′ − 6y′′ + 11y′ − 6 = 0 is
(a) φ = c1e

−x + c2e
2x + c3e

3x (b) φ = c1e
x + c2e

−2x + c3e
−3x

(c) φ = c1e
x + c2e

2x + c3e
3x (d) φ = c1e

−x + c2e
−2x + c3e

−3x

2.2 Initial value problems for n-th order equations

An initial value problem for L(y) = 0 is a problem of finding a solution φ which has
prescribed values for it, and its first n − 1 derivatives, at some point x0 (the initial
point). If α1, . . . , αn are given constants, and x0 is some real number, the problem of
finding a solution φ of L(y) = 0 satisfying

φ(x0) = α1, φ′(x0) = α2, · · · , φ(n−1)(x0) = αn,

is denoted by

L(y) = 0, y(x0) = α1, y′(x0) = α2, · · · , y(n−1)(x0) = αn.

There is only one solution to such an initial value problem, and the demonstration
of this will depend on an estimate for the rate of growth of a solution φ of L(y) = 0,
together with its derivatives φ′, · · · , φ(n−1). We define

‖φ(x)‖ =
(
|φ(x)|2 + · · ·+ |φ(n−1)(x)|2

)1/2
,

the positive square root being understood.
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Theorem 2.3 Let φ be any solution of

L(y) = y(n) + a1y
(n−1) + · · ·+ any = 0

on an interval I containing a point x0. Then for all x ∈ I

‖φ(x0)‖e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ek|x−x0|, (2.8)

where
k = 1 + |a1|+ · · ·+ |an|.

Proof:
Let u(x) = ‖φ(x)‖2, implies

u(x) = |φ(x)|2 + |φ′(x)|2 + · · ·+ |φ(n−1)(x)|2.

Then,

u′ = φφ
′
+ φ′φ+ · · ·+ φ(n−1)φ(n) + φ(n)φ(n−1)

|u′| = |φφ̄′ + φ′φ̄+ φφ̄′′ + φ′′φ̄′ + · · ·+ φn−1φ̄n + φnφ̄n−1|
≤ |φφ̄′|+ |φ′φ̄|+ |φφ̄′′|+ |φ′′φ̄′|+ · · ·+ |φn−1φ̄n|+ |φnφ̄n−1|
≤ |φ||φ̄′|+ |φ′||φ̄|+ |φ||φ̄′′|+ |φ′′||φ̄′|+ · · ·+ |φn−1||φ̄n|+ |φn||φ̄n−1|
≤ |φ||φ′|+ |φ′||φ|+ |φ′||φ′′|+ |φ′′||φ′|+ · · ·+ |φn−1||φn|+ |φn||φn−1|
≤ 2|φ||φ′|+ 2|φ′||φ′′|+ · · ·+ 2|φn−1||φn|. (2.9)

Since φ is a solution of L(y) = 0, we haveL(φ) = 0, that is,

φ(n) + a1φ
(n−1) + · · ·+ anφ = 0

φn = −[a1φ
(n−1) + a2φ

(n−2) + · · ·+ anφ]. (2.10)

Using 2.10 in 2.9, we get

|u′| ≤ 2|φ||φ′|+ 2|φ′|+ |φ′′|+ · · ·+ 2|φn−1|| − [a1φ
(n−1) + a2φ

(n−2) + · · ·+ a(n−1)φ
′ + anφ]|

≤ 2|φ(x)||φ′(x)|+ 2|φ′(x)||φ′′(x)|+ · · ·+ 2|φn−2(x)||φn−1(x)|+ 2|φn−1(x)|[|a1||φ(n−1)(x)|
+ · · ·+ |an||φ(x)|]
≤ 2|φ(x)||φ′(x)|+ 2|φ′(x)||φ′′(x)|+ · · ·+ 2|φn−2(x)||φn−1(x)|+ 2|a1||φn−1(x)|2

+ · · ·+ 2|an||φ(n−1)(x)||φ(x)|.

We now apply the elementary inequality 2|b||c| ≤ |b|2 + |c|2 to obtain

|u′| ≤ |φ|2 + |φ′|2 + |φ′|2 + |φ′′|2 + · · ·+ |φn−2|2 + |φn−1|2 + |a2|
[
|φn−2|2 + |φn−1|2

]
+ · · ·+ |an|

≤ (1 + |an|)|φ|2 + (2 + |an−1||φ′|2) + · · ·+ (2 + |a2|)|φn−1|2 + |φn−1|2

≤ (2 + 2|a1|+ 2|a2|+ · · ·+ 2|an−1|+ 2|an|)|φ|2 + (2 + 2|a1|+ 2|a2|+ · · ·+ 2|an−1|
+ 2|an|)|φ′|2 + · · ·+ (2 + 2|a1|+ 2|a2|+ · · ·+ 2|an−1|+ 2|an|)|φ(n−2)|2

≤ (2 + 2|a1|+ 2|a2|+ · · ·+ 2|an−1|+ 2|an|)[|φ|2 + |φ′|2 + |φ′′|2 + · · ·+ |φ(n−2)|2 + |φ(n−1)|2]

≤ 2(1 + |a1|+ |a2|+ · · ·+ |an−1|+ |an|)u,
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where
u = [|φ|2 + |φ′|2 + |φ′′|2 + · · ·+ |φ(n−2)|2 + |φ(n−1)|2].

Thus
|u′(x)| ≤ 2ku(x),

where k = (1 + |a1|+ |a2|+ · · ·+ |an−1|+ |an|). Hence

−2ku(x) ≤ u′(x) ≤ 2ku(x). (2.11)

Let x > x0. Consider the right inequality of 2.11, we have

u′(x) ≤ 2ku(x)

u′(x)

u(x)
≤ 2k.

Now we integrate from x0 to x, ∫ x

x0

u′(x)

u(x)
≤ 2k

∫ x

x0

dx

[log u(x)]xx0 ≤ 2k[x]xx0
log u(x)− log u(x0) ≤ 2k(x− x0)

log

(
u(x)

u(x0)

)
≤ 2k(x− x0)

u(x)

u(x0)
≤ 2k(x− x0)

u(x) ≤ e2k(x−x0)u(x0).

Substituting u(x) = ‖φ(x)‖2 and taking square root on both sides, we get

‖φ(x)‖ ≤ ‖φ(x0)‖ek(x−x0). (2.12)

Consider the left inequality of 2.11, we have

−2ku(x) ≤ u′(x)

u′(x) ≤ 2ku(x)

u′(x)

u(x)
≤ 2k.

Now we integrate from x0 to x, ∫ x

x0

u′(x)

u(x)
≥ −2k

∫ x

x0

dx

[log u(x)]xx0 ≥ −2k[x]xx0
log u(x)− log u(x0) ≥ −2k(x− x0)

log

(
u(x)

u(x0)

)
≤ −2k(x− x0)

u(x)

u(x0)
≥ −2k(x− x0)
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u(x) ≥ e−2k(x−x0)u(x0)

‖φ(x)‖ ≥ ‖φ(x0)‖e−k(x−x0). (2.13)

From 2.12 and 2.13

‖φ(x0)‖e−k(x−x0) ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ek(x−x0).

Similarly for x < x0 by integrating from x to x0

‖φ(x0)‖ek(x−x0) ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖e−k(x−x0)

from the above two inequalities we can obtain

‖φ(x0)‖e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ek|x−x0|.

Hence proved the theorem.

Theorem 2.4 (Uniqueness Theorem) Let α1, · · · , αn be any n constants, and let x0 be
any real number. On any interval I containing x0, there exists at most one solution φ of
L(y) = 0 satisfying

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn.

Proof:
We want to prove that there is a unique solution for the initial value problem L(y) =
0. Suppose φ and ψ were two solutions of the initial value problem L(y) = 0 on I
satisfying the above conditions at x0. Let

χ = φ− ψ. (2.14)

Then L(χ) = L(φ)− L(ψ) = 0 and

χ(x0) = (φ− ψ)(x0)

= α1 − α1 = 0

χ′(x0) = (φ− ψ)′(x0)

= φ′(x0)− ψ′(x0)

= α2 − α2 = 0

...

χ(n−1)(x0) = φ(n−1)(x0)− ψ(n−1)(x0)

= αn − αn = 0.

We know that if φ is a solution of L(y) = 0, then

‖φ(x0)‖e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ek|x−x0|,

where k = 1 + |a1| + · · · + |an|. Now, applying this inequality for χ we get ‖χ(x)‖ = 0
for all x ∈ I. This implies χ(x) = 0 for all x ∈ I, or φ = ψ.
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Definition 2.2 The Wronskian W (φ1, · · · , φn) of n functions φ1, · · · , φn having n − 1
derivatives on an interval I is defined to be the determinant function

W (φ1, · · · , φn) =

∣∣∣∣∣∣∣∣∣
φ1 · · · φn
φ′1 · · · φ′n
... · · · ...

φ
(n−1)
1 · · · φ

(n−1)
n

∣∣∣∣∣∣∣∣∣ ,
its value at any x in I being W (φ1, . . . , φn)(x).

Theorem 2.5 If φ1, . . . , φn are n solutions of L(y) = 0 on an interval I, they are linearly
independent if and only if

W (φ1, . . . , φn)(x) 6= 0, for all x ∈ I.

Proof:
Assume that W (φ1, . . . , φn)(x) 6= 0, for all x ∈ I
To prove: φ1, φ2, · · · , φn are linearly independent.
Let c1, c2, · · · , cn be constants such that

c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) = 0, (2.15)

∀x ∈ I.

c1φ
′
1(x) + c2φ

′
2(x) + · · ·+ cnφ

′
n(x) = 0 (2.16)

...

c1φ
(n−1)
1 (x) + c2φ

(n−1)
2 (x) + · · ·+ cnφ

(n−1)
n (x) = 0, (2.17)

∀x ∈ I
For fixed x in I, the above n linear homogeneous equations satisfied by c1, c2, · · · , cn.
The determinant is W (φ1, · · · , φn)(x) 6= 0. Hence there is only one solution to this sys-
tem namely c1 = c2 = · · · = cn = 0. Therefore φ1, φ2, · · · , φn are linearly independent.

Conversely assume that φ1, φ2, · · · , φn are linearly independent solution of L(y) =
0.
To prove: W (φ1, . . . , φn)(x) 6= 0

Assume that there is an x0 in I such that W (φ1, . . . , φn)(x0) = 0. This implies that
the system of liner equations

c1φ1(x0) + c2φ2(x0) + · · ·+ cnφn(x0) = 0 (2.18)
c1φ
′
1(x0) + c2φ

′
2(x0) + · · ·+ cnφ

′
n(x0) = 0 (2.19)

...
c1φ

(n−1)
1 (x0) + c2φ

(n−1)
2 (x0) + · · ·+ cnφ

(n−1)
n (x0) = 0 (2.20)

has a solution c1, c2, · · · , cn where not all constants are zero. Let c1, c2, · · · , cn be such
a solution and consider the function ψ = c1φ1 + c1φ1 + · · ·+ cnφn. Then

L(ψ) = L(c1φ1 + c1φ1 + · · ·+ cnφn)
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= c1L(φ1) + c2L(φ2) + · · ·+ cnL(φn)

= 0 ∵ L(φ1) = · · ·L(φn) = 0.

Put x = x0. Then

ψ(x0) = c1φ1(x0) + c2φ2(x0) + · · ·+ cnφn(x0) = 0

ψ′(x0) = c1φ
′
1(x0) + c2φ

′
2(x0) + · · ·+ cnφ

′
n(x0) = 0.

Similarly
ψ′′(x0) = 0 · · ·ψn−1(x0) = 0.

Thus ψ(x0) = 0. This is contradiction to our assumption that φ1, . . . , φn are linearly
independent. Hence W (φ1, · · · , φn)(x) 6= 0, ∀x ∈ I.

Theorem 2.6 (Existence theorem) Let α1, . . . , αn be any n constants, and let x0 be any
real number. There exists a solution φ of L(y) = 0 on −∞ < x <∞ satisfying

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn. (2.21)

Proof:
Let φ1, . . . , φn be any set of n linearly independent solutions of L(y) = 0 on −∞ < x <
∞. It will be shown that there exist unique constants c1, · · · , cn such that

φ = c1φ1 + · · ·+ cnφn

is a solution of L(y) = 0 satisfying 2.41. Such constants would have to satisfy

c1φ1(x0)+ · · ·+ cnφn(x0) = α1,

c1φ
′
1(x0)+ · · ·+ cnφ

′
n(x0) = α2,

...

c1φ
(n−1)
1 (x0)+ · · ·+ cnφ

(n−1)
n (x0) = αn,

which is a system of n linear equations for c1, · · · , cn. The determinant of the coeffi-
cients is just W (φ1, · · · , φn)(x0) which is not zero, by Theorem 2.5.
Therefore, there is a unique set of constants c1, · · · , cn satisfying the above equations.
For this choice of c1, . . . , cn, the function

φ = c1φ1 + · · ·+ cnφn

will be the desired solution.

Theorem 2.7 Let φ1, . . . , φn be n linearly independent solutions of L(y) = 0 on an inter-
val I. If c1, . . . , cn are any constants,

φ = c1φ1 + . . .+ cnφn (2.22)

is a solution, and every solution may be represented in this form.
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Proof:
We have already seen that

L(φ) = c1L(φ1) + . . .+ cnL(φn) = 0.

Now, let φ be any solution of L(y) = 0, and let x0 be in I. Suppose

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn.

In the proof of Theorem 2.6, we showed that there exist unique constants c1, · · · , cn
such that ψ = c1φ1 + · · ·+ cnφn is a solution of L(y) = 0 on I satisfying

ψ(x0) = α1, ψ
′(x0) = α2, · · · , ψ(n−1)(x0) = αn.

The uniqueness theorem (Theorem 2.4) implies that φ = ψ, proving that every solution
φ can be represented as in 2.22.

A simple formula exists for the Wronskian, as in the case n = 2.

Theorem 2.8 Let φ1, . . . , φn be n solutions of L(y) = 0 on an interval I containing a
point x0. Then

W (φ1, . . . , φn)(x) = e−a1(x−x0)W (φ1, . . . , φn)(x0). (2.23)

Proof:
Let φ1, φ2, · · · , φn be n solutions of L(y) = 0. Then,

W (φ1, · · · , φn) =

∣∣∣∣∣∣∣∣∣
φ1 · · · φn
φ′1 · · · φ′n
... · · · ...

φ
(n−1)
1 · · · φ

(n−1)
n

∣∣∣∣∣∣∣∣∣ .
Now W ′ is sum of n determinants, that is, W ′ = v1 + v2 + · · · + vn, where vk differs
from W only in its k-th row. vk is obtained by differentiating k-th row of W .

W ′(X) = v1 + v2 + · · ·+ vn

=

∣∣∣∣∣∣∣∣∣
ϕ′1 ϕ′2 · · · ϕ′n
ϕ′1 ϕ′2 · · · ϕ′n
...

... . . . ...
ϕn−1

1 ϕn−1
2 · · · ϕn−1

n

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ2 · · · ϕn
ϕ′′1 ϕ′′2 · · · ϕ′′n
...

... . . . ...
ϕn−1

1 ϕn−1
2 · · · ϕn−1

n

∣∣∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ2 · · · ϕn
ϕ′1 ϕ′2 · · · ϕ′n
...

... . . . ...
ϕn1 ϕn2 · · · ϕnn

∣∣∣∣∣∣∣∣∣ .
The 1st n−1 determinant v1, v2, · · · , vn−1 are all zero because they each have 2 identical
rows. Therefore

W ′(x) =

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ2 · · · ϕn
ϕ′1 ϕ′2 · · · ϕ′n
...

... . . . ...
ϕn1 ϕn2 · · · ϕnn

∣∣∣∣∣∣∣∣∣
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and

L(y) =y(n) + a1y
(n−1) + · · ·+ any = 0

L(φ1) =φ
(n)
1 = −a1φ

(n−1)
1 − · · · − anφ1

L(φ2) =φ
(n)
2 = −a1φ

(n−1)
2 − · · · − anφ2

...

L(φn) =φ(n)
n = −a1φ

(n−1)
n − · · · − anφn.

Thus

W ′ =

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ2 · · · ϕn
ϕ′1 ϕ′2 · · · ϕ′n
...

... . . . ...
−a1φ

(n−1)
n − · · · − anφn −a2φ

(n−1)
2 − · · · − a2φ

(
nn− 2) · · · −anφ1 − · · · − anφn

∣∣∣∣∣∣∣∣∣
= −a1

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ2 · · · ϕn
ϕ′1 ϕ′2 · · · ϕ′n
...

... . . . ...
ϕn−1

1 ϕn−1
2 · · · ϕn−1

n

∣∣∣∣∣∣∣∣∣− a2

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ2 · · · ϕn
ϕ′1 ϕ′2 · · · ϕ′n
...

... . . . ...
ϕn−2

1 ϕn−2
2 · · · ϕn−2

n

∣∣∣∣∣∣∣∣∣+ · · · − an

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ2 · · · ϕn
ϕ′1 ϕ′2 · · · ϕ′n
...

... . . . ...
ϕ1 ϕ2 · · · ϕn

∣∣∣∣∣∣∣∣∣ .
This implies

W ′ = −a1W

W ′

W
= −a1∫

W ′

W
dx = −

∫
a1dx

logW = −a1x+ k, (where k is a constant)

W = e−a1x+k

= e−a1xek

= ce−a1x, (where ek = c)

W (φ1, φ2, · · · , φn)(x) = ce−a1x.

Put x = x0 in the above equation. Then

W (φ1, φ2, · · · , φn)(x0)

e−a1x0
= c

c = W (φ1, φ2, · · · , φn)(x0)ea1x0 .

Hence

W (φ1, φ2, · · · , φn)(x) = W (φ1, φ2, · · · , φn)(x0)ea1x0 .e−a1x

W (φ1, φ2, · · · , φn)(x) = e−a1(x−x0).W (φ1, φ2, · · · , φn)(x0).

Hence the proof.
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Corollary 2.1 Let φ1, . . . , φn be n solutions of L(y) = 0 on an interval I containing x0.
Then they are linearly independent on I if and only if W (φ1, . . . , φn)(x0) 6= 0.

Let us sum up

1. We have discussed the existence and uniqueness theorem of the initial value
problem for nth order equations.

2. We have proved the n solutions of L(y) = 0, then the linear combination of those
n solutions is also a solution of L(y) = 0.

3. Finally, we solved some illustrative examples.

Check your progress

3. Define Wronskian of n functions φ1, φ2 · · ·φn.

4. For the second order differential equations, ||φ(x)|| can be defined as
(a) |φ(x)|2 + |φ′(x)|2 (b) |φ′(x)|2 + |φ′′(x)|2
(c) [|φ(x)|2 + |φ′(x)|2]

1
2 (d) [|φ′(x)|2 + |φ′′(x)|2]

1
2

5. State the existence theorem for solutions of a nth order initial value problem,
with constant coefficients.

6. State the uniqueness theorem for solutions of a nth order initial value problem,
with constant coefficients.

2.3 The non - homogeneous equation of order n

Theorem 2.9 Let b be continuous on an interval I, and let φ1, . . . , φn be n-linearly in-
dependent solutions of L(y) = 0 on I. Every solution ψ of L(y) = b(x) can be written
as

ψ = ψp + c1φ1 + · · ·+ cnφn,

where ψp is a particular solution of L(y) = b(x), and c1, . . . , cn are constants. Every such
ψ is a solution of L(y) = b(x). A particular solution ψp is given by

ψp(x) =
n∑
k=1

φk(x)

∫ x

x0

Wk(t)b(t)

W (φ1, φ2, · · · , φn)(t)
dt. (2.24)

Proof:
Let b be a continuous function on an interval I, and consider the equation :

L(y) = y(n) + a1y
(n−1) + a2y

(n−2) + · · ·+ any = b(x), (2.25)

where a1, a2, · · · , an are constants. If ψp is a particular solution of L(y) = b(x), and ψ
is any other solution, then

L(ψ − ψp) = L(ψ)− L(ψp) = b(x)− b(x) = 0.
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Thus ψ−ψp is a solution of the homogeneous equation L(y) = 0, and this implies that
any solution ψ of L(y) = b(x) can be written in the form

ψ = ψp + c1φ1 + c2φ2 + · · ·+ cnφn,

where ψp is a particular solution of L(y) = b(x), the functions φ1, φ2, · · · , φn are linearly
independent solutions of L(y) = 0, and c1, · · · , cn are constants.

To find a particular solution ψp, we proceed just as in the case n = 2, that is, we
use the variation of constants method. We try to find n functions u1, u2, . . . , un so that

ψp = u1φ1 + u2φ2 + · · ·+ unφn

is a solution. Then

u′1φ1 + · · ·+ u′nφn = 0,

ψ′p = u1φ
′
1 + · · ·+ unφ

′
n,

u′1φ
′
1 + · · ·+ u′nφ

′
n = 0,

ψ′′p = u1φ
′′
1 + · · ·+ unφ

′′
n.

Thus, if u′1, · · ·u′n satisfy

u′1φ1 + · · ·+ u′nφn = 0,

u′1φ
′
1 + · · ·+ u′nφ

′
n = 0,

... (2.26)

u′1φ
(n−2)
1 + · · ·+ u′nφ

(n−2)
n = 0,

u′1φ
(n−1)
1 + · · ·+ u′nφ

(n−1)
n = b(x),

we see that

ψp = u1φ1 + · · ·+ unφn,

ψ′p = u1φ
′
1 + · · ·+ unφ

′
n,

... (2.27)

ψ(n−1)
p = u1φ

(n−1)
1 + · · ·+ unφ

(n−1)
n ,

ψ(n)
p = u1φ

(n)
1 + · · ·+ unφ

(n)
n + b(x).

Hence
L(ψp) = u1L(φ1) + · · ·+ unL(φn) + b(x) = b(x),

and indeed ψp = u1(φ1) + · · ·+ un(φn) is a solution of L(y) = b(x).
Now the determinant of the coefficient

W (φ1, . . . , φn)(x) =

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ2 · · · ϕn
ϕ′1 ϕ′2 · · · ϕ′n
...

... . . . ...
ϕn−1

1 ϕn−1
2 · · · ϕn−1

n

∣∣∣∣∣∣∣∣∣ 6= 0,
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since φ1, . . . , φn are linearly independent. Therefore there are unique functions u′1, · · · , u′n
satisfying 2.26. By cramer rule

u′1 =

∣∣∣∣∣∣∣∣∣
0 ϕ2 · · · ϕn
0 ϕ′2 · · · ϕ′n
...

... . . . ...
b ϕn−1

2 · · · ϕn−1
n

∣∣∣∣∣∣∣∣∣
W (φ1, . . . , φn)

.

In general

u′k =

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ2 ϕk−1 0 ϕk+1 · · · ϕn
ϕ′1 ϕ′2 ϕ′k−1 0 ϕ′k+1 · · · ϕ′n
...

... . . . ...
ϕn−1

1 ϕn−1
2 ϕn−1

k−1 b ϕn−1
k+1 · · · ϕn−1

n

∣∣∣∣∣∣∣∣∣
W (φ1, . . . , φn)

u′k(x) =
Wk(x)b(x)

W (φ1, . . . , φn)(x)
, k = 1, 2, · · · , n,

where Wk is the determinant obtaind from W (φ1, . . . , φn) by replacing the k-th column
by 0, 0, · · · , 0, 1. Let x0 be any point in I. Then

uk(x) =

∫ x

x0

Wk(t)b(t)

W (φ1, · · · , φn)(t)
dt, k = 1, 2, · · · , n.

The particular solution is,

ψp(x) =
n∑
k=1

φk(x)

∫ x

x0

Wk(t)b(t)

W (φ1, φ2, · · · , φn)(t)
dt.

Example 2.2 Find the solution of

y′′′ + y′′ + y′ + y = 1, (2.28)

which satisfies

ψ(0) = 0, ψ′(0) = 1, ψ′′(0) = 0. (2.29)

Solution:
The homogeneous equation of 2.28 is

y′′′ + y′′ + y′ + y = 0, (2.30)

and the characteristic polynomial corresponding to it is

p(r) = r3 + r2 + r + 1.

The roots of p are i,−i, and −1. Since we are interested in a solution satisfying real
initial conditions we take for independent solutions of 2.30.

φ1(x) = cos x, φ2(x) = sinx, φ3(x) = e−x.
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To obtain a particular solution of 2.28 of the form u1φ1 + u2φ2 + u3φ3 we must solve
the following eqations for u′1, u

′
2, u
′
3:

u′1φ1 + u′2φ2 + u′3φ3 =0

u′1φ
′
1 + u′2φ

′
2 + u′3φ

′
3 =0

u′1φ
′′
1 + u′2φ

′′
2 + u′3φ

′′
3 =1,

which in this case reduce to

(cosx)u′1 + (sinx)u′2 + e−xu′3 =0

(− sinx)u′1 + (cosx)u′2 − e−xu′3 =0 (2.31)
(− cosx)u′1 − (sinx)u′2 + e−xu′3 =1.

The determinant of the coefficient is

W (φ1, φ2, φ3)(x) =

∣∣∣∣∣∣
cosx sinx e−x

− sinx cosx −e−x
− cosx − sinx e−x

∣∣∣∣∣∣ .
Using 2.23 we have

W (φ1, φ2, φ3)(x) = e−xW (φ1, φ2, φ3)(0),

since a1 = 1 in this case. Now

W (φ1, φ2, φ3)(0) =

∣∣∣∣∣∣
1 0 1
0 1 1
1 0 1

∣∣∣∣∣∣ = 2,

and thus
W (φ1, φ2, φ3)(x) = 2e−x.

Solving 2.31 for u1 we find that

u′1(x) =
1

2
ex

∣∣∣∣∣∣
0 sinx e−x

0 cosx −e−x
1 − sinx e−x

∣∣∣∣∣∣ = −1

2
(cosx+ sinx). (2.32)

Similarly we obtain

u′2(x) =
1

2
(cosx− sinx), (2.33)

u′3(x) =
1

2
ex. (2.34)

Integrating 2.32-2.34, we obtain as choice for u1, u2, u3:

u1 =
1

2
(cosx− sinx),

u2 =
1

2
(sinx+ cosx),
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u3 =
1

2
ex.

Therefore a particular solution of 2.28 is given by

u1(x)φ1(x) + u2(x)φ2(x) + u3(x)φ3(x) =
1

2
[(cosx− sinx) cosx+ (sinx+ cosx) sinx+ 1]

= 1.

The general solution of 2.28 is of the form

ψ(x) = 1 + c1 cosx+ c2 sinx+ c3e
−x,

where c1, c2, c3 are constants. We must choose these constants so that the conditions
2.29 are valid. This leads to the g equations for c1, c2, c3:

c1 + c3 = −1, c2 − c3 = 1, c1 − c3 = 0,

which have the unique solution

c1 = −1

2
, c2 =

1

2
, c3 = −1

2
.

Therefore the solution of the given problem is ψ(x) = 1 + 1
2
(sinx− cosx− e−x).

Let us sum up

1. We have characterized and find the particular solution of non-homogeneous
equation of order n.

2. Finally, we figured out some illustrative examples.

Check your progress

7. Define nonhomogeneous equations for nth order linear equations with constant
coefficients.

2.4 A special method for solving the non-homogeneous
equation

Although the variation of constants method yields a solution of the non-homogeneous
equation, it sometimes requires more labor than necessary. We now give a method,
which is often faster, of solving the non-homogeneous equation L(y) = b(x) when b is
a solution of some homogeneous equation M(y) = 0 with constant coefficients. Thus
b(x) must be a sum of terms of the type P (x)eax, where P is a polynomial and a is
a constant. Suppose L and M have constant coefficients, and have orders n and m
respectively. If ψ is a solution of L(y) = b(x) and M(b) = 0, then clearly

M(L(ψ)) = M(b) = 0.

This shows that ψ is a solution of a homogeneous equation M(L(y)) = 0 with constant
coefficients of order m + n. Thus ψ can be written as a linear combination with con-
stant coefficients of m + n linearly independent solutions of M(L(y)) = 0. Not every
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linear combination will be a solution of L(y) = b(x), however. Thus, to find out what
conditions must be satisfied by the constants, we substitute back into L(y) = b(x). This
always leads to a determination of a set of coefficients.

We call this method the annihilator method, since to solve L(y) = b(x), we find
an M which annihilates b, i.e., M(b) = 0. Once M has been found, the problem be-
comes algebraic in nature, with no integrations being necessary. Actually, as we have
seen from the example, all we require is the characteristic polynomial q of M . The
following is a table of some functions together with characteristic polynomials of their
annihilators. In this table, a is a constant, and k is a non-negative integer.

Functions Characteristic Polynomial of an Annihilator
eax r − a
xkeax (r − a)k+1

sin ax, cos ax (a real) r2 + a2

xk sin ax, xk cos ax (a real) (r2 + a2)k+1

Example 2.3 Find the particular solution of the differential equation

L(y) = y′′ − 3y′ + 2y = x2.

Solution:
Since x2 is a solution of M(y) = y′′′ = 0, every solution ψ of L(y) = x2 is a solution of
M(L(y)) = y(5) − 3y(4) + 2y(3) = 0.

The characteristic polynomial of this equation is r3(r2 − 3r + 2), the product of the
characteristic polynomials for L and M . The roots are 0, 0, 0, 1, 2, hence ψ have the
form:

ψ(x) = c0 + c1x+ c2x
2 + c3e

x + c4e
2x.

We seek a particular solution ψp of L(y) = x2, we can assume ψp has the form

ψp(x) = c0 + c1x+ c2x
2.

To determine c0, c1, c2 such that L(ψp) = x2. We yield:

ψ′p(x) = c1 + 2c2x,

ψ′′p(x) = 2c2,

and
L(ψp) = (2c2 − 3c1 + 2c0) + (−6c2 + 2c1)x+ 2c2x

2 = x2.

Thus

2c2 = 1, or c2 = 1/2, and − 6c2 + 2c1 = 0, or c2 = 1/2, and c1 = 3/2,

and 2c2 − 3c1 + 2c0 = 0, or c0 = 7/4.

Therefore, a particular solution is:

ψp(x) =
1

4
(7 + 6x+ 2x2)

is a particular solution of L(y) = x2.
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Let us consider another example of the annihilator method. Consider the equation

L(y) = Ae(ax), (2.35)

where L has characteristic polynomial p, and A, a are constants. We assume that a is
not a root of p. The operatorM given byM(y) = y′−ay, with characteristic polynomial
r − a, annihilates Ae(ax). The characteristic polynomial of ML is (r − a)p(r), and a is
a simple root (multiplicity 1) of this. Thus any solution ψ of 2.35 has the form

ψ = Be(ax) + φ,

where L(φ) = 0, and B is a constant. Placing back into 2.35 we obtain

L(ψ) = BL(e(ax)) + L(φ) = Bp(a)e(ax) = Ae(ax).

Since p(a) 6= 0 we see that B = A/p(a). Therefore we have shown that, if a is not a
root of the characteristic polynomial of L, there is a solution ψ of 2.35 of the form

Ψ(x) =
A

p(a)
e(ax).

2.4.1 Algebra of constant coefficient operators

In order to justify the annihilator method, we study the algebra of constant coefficient
operators a little more carefully. For the type of equation we have in mind:

a0y
(n) + a1y

(n−1) + · · ·+ any = b(x),

where a0 6= 0, a1, . . . , an are constants, and b is a sum of products of polynomials and
exponentials, every solution ψ has all derivatives on −∞ < x <∞. This follows from
the fact that ψ has n derivatives there, and

ψ(n) =
b

a0

− a1

a0

ψ(n−1) − · · · − an
a0

ψ,

where b has all derivatives on −∞ < x < ∞. All the operators we now define will
be assumed to be defined on the set of all functions on −∞ < x < ∞ which have all
derivatives there. Let L and M denote the operators given by:

L(φ) = a0φ
(n) + a1φ

(n−1) + · · ·+ anφ,

M(φ) = b0φ
(m) + b1φ

(m−1) + · · ·+ bmφ,

where a0, a1, . . . , an, b0, b1, . . . , bm are constants, with a0 6= 0, b0 6= 0. It will be conve-
nient in what follows to consider a0, b0 which are not necessarily 1. The characteristic
polynomials of L and M are thus:

p(r) = a0r
n + a1r

n−1 + · · ·+ an,

q(r) = b0r
m + b1r

m−1 + · · ·+ bm,

respectively. We define the sum L+M to be the operator given by:

(L+M)(φ) = L(φ) +M(φ),
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and the product ML to be the operator given by:

(ML)(φ) = M(L(φ))

If α is a constant, we define αL by:

(αL)(φ) = α(L(φ)).

We note that L + M , ML, and αL are all linear differential operators with constant
coefficients.

Two operators L and M are said to be equal if

L(φ) = M(φ)

for all φ which have an infinite number of derivatives on−∞ < x <∞. Suppose L and
M have characteristic polynomials p and q, respectively. Since erx, for any constant r,
has an infinite number of derivatives on −∞ < x <∞, we see that if L = M then

L(erx) = p(r)erx = M(erx) = q(r)erx,

and hence p(r) = q(r) for all r. This implies that m = n and ak = bk for k = 0, 1, . . . , n.
Thus L = M if and only if L and M have the same order and the same coefficients, or,
equivalently, if and only if p = q.

If D is the differentiation operator

D(φ) = φ′,

we define D2 = DD and successively

Dk = DDk−1, (k = 2, 3, · · · ).

For completeness, we define D0 by D0(φ) = φ, but do not usually write it explicitly. If
α is a constant, we understand by α operating on a function φ just multiplication by
α. Thus

α(φ) = (αD0)(φ) = αφ.

Now, using our definitions, it is clear that

L = a0D
n + a1D

n−1 + · · ·+ an,

and
M = b0D

m + b1D
m−1 + · · ·+ bm.

Theorem 2.10 The correspondence which associates with each

L = a0D
n + a1D

n−1 + · · ·+ an

its characteristic polynomial p given by

ρ(r) = a0r
n + a1r

n−1 + · · ·+ an

is a one-to-one correspondence between all linear differential operators with constant
coefficients and all polynomials. If L and M are associated with p and q, respectively,
then L+M is associated with p+ q, ML is associated with pq, and αL is associated with
αp (where α is a constant).
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Proof:
We have already seen that the correspondence is one-to-one, since L = M if and only
if p = q. The remainder of the theorem can be shown directly, or by noting that

(L+M)(erx) =L(erx) +M(erx) = [p(r) + q(r)]erx,

(ML)(erx) =M(L(erx)) = M(p(r)erx) = p(r)M(erx) = p(r)q(r)erx,

(αL)(erx) =α(L(erx)) = αp(r)erx.

This result implies that the algebraic properties of the constant coefficient operators
are the same as those of the polynomials. For example, since LM and ML both have
the characteristic polynomial pq, we have LM = ML. If the roots of p are r1, . . . , rn,
then

p(r) = a0(r − r1) · · · (r − rn).

and since the operator
a0(D − r1) · · · (D − rn)

has p as characteristic polynomial, we must have

L = a0(D − r1) · · · (D − rn),

since the operator L has p as its characteristic polynomial. This gives a factorization
of L into a product of constant coefficient operators of the first order.

Theorem 2.11 Consider the equation with constant coefficients

L(y) = P (x)e(ax), (2.36)

where P is the polynomial given by

P (x) = b0x
m + b1x

(m−1) + bm, (b0 6= 0). (2.37)

Suppose a is a root of the characteristic polynomial p of L of multiplicity j. Then there is
a unique solution ψ of 2.36 of the form

ψ(x) = xj(c0x
m + c1x

(m−1) + cn)eax,

where c0, c1, · · · , cm are constants determined by the annihilator method.

Proof:
The proof makes use of the formula

L(xkerz) =

[
p(r)xk + kp′(r)xk−1 +

k(k − 1)

2!
p′′(r)xk−2 + · · ·

+kp(k−1)(r)x+ p(k)(r)

]
erz, (2.38)

which we already proved. The coefficient of p(l)(r)xk−1 is the binomial coefficient and
it can be written as: (

k

l

)
=

k!

(k − l)!l!
.
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Thus we may write

L(xkerx) =

[
k∑
l=0

(
k

l

)
p(l)(r)xk−l

]
erx,

where we understand 0! = 1. An annihilator of the right side of 2.36 is

M = (D − a)m+1,

with characteristic polynomial given by

q(τ) = (τ − a)m+1.

Since a is a root of p with multiplicity j, it is a root of pq with multiplicity j + m + 1.
Thus, solutions of ML(y) = 0 are of the form

ψ(x) =
(
c0x

j+m + c1x
j+m−1 + · · ·+ cj+m

)
eax + φ(x),

where L(φ) = 0, and φ involves exponentials of the form esx with s a root of p, s 6= a.
Since a is a root of p with multiplicity j, we have that

(cm+1x
j−1 + cm+2x

j−2 + · · ·+ cm+j)e
ax

is also a solution of L(y) = 0. Consequently, we see that there is a solution of 2.36
having the form

ψ(x) = xj
(
c0x

m + c1x
m−1 + · · ·+ cm

)
eax, (2.39)

where c0, c1, . . . , cm are constants.
We now show that these constants are uniquely determined by the requirement

that ψ satisfy 2.36. Substituting 2.39 into L, we obtain

L(ψ) = c0L(xj+meax) + c1L(xj+m−1eax) + · · ·+ cmL(xjeax). (2.40)

The terms in this sum can be computed using 2.38. We note that

p(a) = p′(a) = · · · = p(j−1)(a) = 0, p(j)(a) 6= 0.

Since a is a root of p with multiplicity j. We have k ≥ j:

kj = p(a)xk + kp′(a)xk−1 +
k(k − 1)

2!
p′′(a)xk−2 + · · ·+ p(k)(a),

and

L(xj+neax) =

[(
j +m

m

)
p(j)(a)xm +

(
j +m

m− 1

)
p(j+1)(a)xm−1 + · · ·+ p(j+m)(a)

]
eax

L(xj+m−1eax) =

[(
j +m− 1

m− 1

)
p(j)(a)xm−1 + · · ·+ p(j+m−1)(a)

]
eax

...
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L(xjeax) =

(
j

0

)
pj(a)eax = pj(a)eax.

Using these computations in 2.40, and noting 2.37, we see that satisfies 2.36 if and
only if

c0

(
j +m

m

)
pj(a) = b0,

c0

(
j +m

m− 1

)
pj+1(a) + c1

(
j +m− 1

m− 1

)
pj(a) = b1,

...

c0p
j+1(a) + c1p

j+m−1(a) + · · ·+ cmp
j(a) = bm.

This is a set of m+1 linear equations for the constants c0, c1, · · · , cm. They have a
unique solution, which can be obtained by solving the equations in succession since
pj(a) 6= 0. Alternately, we see that the determinant of the coefficients is just(

j +m

m

)(
j +m− 1

m− 1

)
· · · 1[pj(a)]m+1 6= 0.

This completes the proof.
Let us sum up

1. We have defined the special method for non-homogeneous equation of order n.

2. We have studied algebra of constant coefficient operators.

3. We have rectified the equation with the constant coefficient by the annihilator
method.

4. Finally, we rectified some illustrative examples.

Check your progress

8. The characteristic polynomial of an annihilator method of a function xkeax is
(a) r − a (b) (r − a)k+1 (c) (r2 + a2)k+1 (c) r2 + a2

9. Explain annihilator method.

Summary
This unit provides tools for solving linear differential equations of order n with con-
stant coefficients.

• The homogeneous equations of order ‘n’ are used for solving the initial value
problems for nth order equations.

• Fundamentally for each nth order differential equation the method used involves
a set of ‘n’ linearly independent functions, i.e., a fundamental set of solutions, in
order to obtain a general solution.
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• The non-homogeneous equations of order n can be solved by finding the partic-
ular integral.

• The particular solution to the non-homogeneous equation is evaluated using spe-
cific equations and the particular solution.

• The annihilator method is a technique for solving non-homogeneous linear dif-
ferential equations by applying a differential operator, called the annihilator,
that eliminates the non-homogeneous term. Once the equation becomes ho-
mogeneous, it is solved, and the particular solution is found using the original
non-homogeneous term.

Glossary

• Initial Value Problem: It is a differential equation accompanied by an appropriate
number of initial conditions and the number of initial conditions essential will
depend on the order of the differential equation.

• Particular solution: A particular solution is a specific solution to a differential
equation that satisfies both the equation and any given initial or boundary con-
ditions. It represents one of possibly many solutions to non-homogeneous differ-
ential equations

• Annihilator method: The annihilator method is a technique for solving non-
homogeneous linear differential equations by applying an operator (annihilator)
that turns the non-homogeneous term into zero, allowing you to solve the result-
ing homogeneous equation.

Self-assessment questions

1. Let W be the Wronskian of two linearly independent solutions of ordinary dif-
ferential equation 2y′′ + y′ + t2y = 0; t ∈ R. Then for all t, there exist a constant
C ∈ R such that W (t) is
(a) Ce−t (b) Ce

−t
2 (c) Ce2t (d) Ce−2t

2. Find the false statement

(a) If φ1, φ2 are linearly independent functions on an interval I, they are linearly
independent on any interval J contained inside I.

(b) If φ1, φ2 are linearly dependent on an interval I, they are linearly dependent
on any interval J contained inside I.

(c) If φ1, φ2 are linearly independent solutions of y′′ + c1y
′ + c2y = 0 on an

interval I, then they are linearly independent on any interval J contained
inside I.

(d) If φ1, φ2 are linearly dependent solutions of y′′+c1y
′+c2y = 0 on an interval

I, then they are linearly dependent on any interval J contained inside I.

3. If φ1 and φ2 are any two solutions of y′′ + a1y
′ + a2y = b(x), where a1, a2 are

constants and b(x) is continuous function on I, then which of the following is a
solution of the corresponding homogeneous equation?
(a) φ1 + φ2 (b) φ1 − φ2 (c) ψp(x) + φ1 + φ2 (d) None of these
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4. The differential equation whose linearly independent solutions are cos 2x, sin 2x
and e−x is,
(a) y′′′ + y′′ + 4y′ = 0 (b) y′′′ + y′′ + 4y′ + 4 = 0
(c) y′′′ − y′′ + 4y′ − 4 = 0 (d) y′′′ − y′′ − 4y′ + 4 = 0

5. Let W be the Wronskian of two linearly independent solutions of ordinary dif-
ferential equation 2y′′ + y′ + t2y = 0; t ∈ R. Then for all t, there exist a constant
C ∈ R such that W (t) is
(a) Ce−t (b) Ce

−t
2 (c) Ce2t (d) Ce−2t

6. If φ satisfies y′ + 2y = 2 + e−x
2 with y(0) = 0, then lim

x→∞
equals

(a) 0 (b) 1 (c) 2 (d) -1

7. The Wronskian of the functions φ1(x) = cos x, φ2(x) = sinx,
φ3(x) = e−x is
(a) 2e−x (b) 2 (c) 3 (d) 2ex

EXERCISES

1. Are the following sets of functions defined −∞ < x < ∞ linearly independent
or dependent there? Why?

(a) φ1(x) = 1, φ2(x) = x, φ3(x) = x3

(b) φ1(x) = eix, φ2(x) = sin x, φ3(x) = 2 cosx

(c) φ1(x) = x, φ2(x) = e2x, φ3(x) = |x|.

2. Prove that if p1, p2, p3, p4 are polynomials of degree two, they are linearly depen-
dent on −∞ < x <∞.

3. Are the following statements true or false? If the statement is true, prove it;
otherwise give a counterexample.

(a) "If φ1, · · ·, φn are linearly independent functions on an interval I, then any
subset of them forms a linearly independent set of functions on I."

(b) "If φ1, · · ·, φn are linearly dependent functions on an interval I, then any
subset of them forms a linearly dependent set of functions on I."

4. Find all solutions of the following equations:

(a) y′′′ − 8y = 0

(b) y(4) + 16y = 0

(c) y′′′ − 5y′′ + 6y′ = 0

(d) y′′′ − iy′′ + 4y′ − 4iy = 0

(e) y(100) + 100y = 0

(f) y(4) + 5y′′ + 4y = 0

(g) y(4) − 16y = 0

(h) y′′′ − 3y′ − 2y = 0
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(i) y′′′ − 3iy′′ − 3y′+ iy = 0.

5. (a) Compute the Wronskian of four linearly independent solutions of the equa-
tion y(4) + 16y = 0.

(b) Compute that the solution φ of this equation which satisfies

φ(0) = 1, φ′(0) = 0, φ′′(0) = 0, φ′′′(0) = 0.

6. Find four linearly independent solutions of the equation y(4) + λy = 0, in case:

(a) λ = 0,

(b) λ > 0,

(c) λ < 0.

7. Consider the equation
y′′′ − 4y′ = 0.

(a) Compute three linearly independent solutions.

(b) Compute the Wronskian of the solutions found in (a).

(c) Find that solution φ satisfying

φ(0) = 0, φ′(0) = 1, φ′′(0) = 0.

8. Consider the equation
y(5) − y(4) − y′ + y = 0.

(a) Compute five linearly independent solutions.

(b) Compute the Wronskian of the solutions found in (a), using Theorem 2.8.

(c) Find that solution φ satisfying

φ(0) = 1, φ′(0) = φ′′(0) = φ′′′(0) = φ(4)(0) = 0.

9. Find all solutions of the following equations:

(a) y′′′ − y′ = x

(b) y′′′ − 8y = eix

(c) y(4) + 16y = cosx

(d) y(4) − 4y(3) + 6y′′ − 4y′ + y = ex

(e) y(4) − y = cosx

(f) y′′ − 2iy′ − y = eix − 2e−ix.

10. Consider the equation L(y) = b(x), where b is continuous on an interval I. If
α1, · · ·, αn are any n constants, and x0 is a point in I, show that there is exactly
one solution ψ of L(y) = b(x) on I satisfying

ψ(x0) = α1, ψ
′(x0) = α2, · · ·, ψ(n−1)(x0) = αn.

(Hint: Let φ be the solution of L(y) = 0 satisfying the same initial conditions. Let
ψ = φ+ ψp where ψp is given by (2.24). Show that ψ is unique.)
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11. Consider the equation

y(n) + a1y
(n−1) + · · ·+ any = b(x),

where a1, · · ·, an are real constants and b is a real-valued continuous function on
some interval I. Show that any solution which satisfies real initial conditions is
real-valued.

12. Using the annihilator method find a particular solution of each of the following
equations:

(a) y′′ + 4y = cosx

(b) y′′ + 4y = sin 2x

(c) y′′ − 4y = 3e2x + 4e−x

(d) y′′ − y′ − 2y = x2 + cosx

(e) y′′ + 9y = x2e3x

(f) y′′ + y = xex cos 2x

(g) y′′ + iy′ + 2y = 2 cosh(2x) + e−2x
(

Note : coshu = (eu+e−u)
2

)
.

(h) y′′′ = x2 + e−x sinx

(i) y′′′ + 3y′′ + 3y′ + y = x2e−x.

13. Let L be a constant coefficient operator, and suppose ψk is a solution of

L(y) = bk(x), k = 1, · · ·,m,

where the bk are continuous functions on some interval I. Show that ψ = ψ1 +
ψ2 + · · ·+ ψm is a solution of

L(y) = b(x), b = b1 + · · ·+ bm.

14. Suppose b = b1 + · · · + bm, where bk is annihilated by the constant coefficient
operator Mk. Show that b is annihilated by M = M1M2 · · ·Mm.

15. (a) Show that if f , g are two functions with k derivatives then

Dk(fg) =
k∑
l=0

(
k

l

)
Dl(f)Dk−l(g)

where (
k

l

)
=

k!

(k − l)!l!
.

(b) Show that if g has k derivatives, and r is a constant,

Dk(erxg) = erx(D + r)k(g)
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16. Let L be a linear differential operator with constant coefficients with character-
istic polynomial p(r) = (r − a)k, that is L = (D − a)k. Using the result of Ex. 1
(b) show that any solutiion φ of L(y) = 0 has the form

φ(x) = ε(ax)P (x)

where P is a polynomial such that deg P ≤ k− 1. Also show that any such φ is a
solution of L(y) = 0.

Answers for check your progress
1. (b) 2. (c)
3. The Wronskian W (φ1, · · · , φn) of n functions φ1, · · · , φn having n− 1 derivatives

on an interval I is defined to be the determinant function

W (φ1, · · · , φn) =

∣∣∣∣∣∣∣∣∣
φ1 · · · φn
φ′1 · · · φ′n
... · · · ...

φ
(n−1)
1 · · · φ

(n−1)
n

∣∣∣∣∣∣∣∣∣ ,
its value at any x in I being W (φ1, . . . , φn)(x).

4. (c)
5. Existence theorem: Let α1, . . . , αn be any n constants, and let x0 be any real

number. There exists a solution φ of L(y) = 0 on −∞ < x <∞ satisfying

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn. (2.41)

6. Uniqueness Theorem: Let α1, · · · , αn be any n constants, and let x0 be any
real number. On any interval I containing x0, there exists at most one solution φ of
L(y) = 0 satisfying φ(x0) = α1, φ

′(x0) = α2, · · · , φ(n−1)(x0) = αn.
7. Let b be a continuous function on an interval I, and consider the equation :

L(y) = y(n) + a1y
(n−1) + a2y

(n−2) + · · ·+ any = b(x),

where a1, a2, · · · , an are constants.
8. Annihilator method : a technique for solving non-homogeneous linear differen-

tial equations by applying a differential operator, called the annihilator, that eliminates
the non-homogeneous term. Once the equation becomes homogeneous, it is solved,
and the particular solution is found using the original non-homogeneous term.

Suggested Readings

1. E. A. Coddington and N. Levinson. Theory of Ordinary Differential. Equations.
New Delhi: Tata Mc Graw-Hill, 1972.

2. W. T. Reid, Ordinary Differential Equations, John Wiley and Sons, New York,
1971.

3. Boyce, W.E. and Richard C. DiPrima. Elementary Differential Equations and
Boundary Value Problems. New York: John Wiley and Sons, Inc., 1986.
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Unit 3

Linear Equations with Variable Coeffi-
cients

OBJECTIVE:
Upon completion of this unit, you will possess the ability to understand the system
of linear differential equations and define the method of solution of a known integral
and the reduction of the order of a homogeneous equations. Finally, we discuss the
significance of Legendre’s equations and functions.

3.1 Introduction

A linear differential equation of order n with variable coefficients has the following
form:

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = b(x), (3.1)

where a0, a1, · · · , an, b are complex-valued functions over a real interval I. Points
where a0(x) = 0 are known as singular points. Assume that a0(x) 6= 0 on I. Di-
viding the equation 3.1 by a0 yields the same equation, but with a0 substituted by the
constant 1. Then we have

y(n) + a1(x)y(n−1) + · · ·+ an(x)y = b(x). (3.2)

As in the situation when a1, a2, · · · , an are constants, we identify the left side of 3.2 as
L(y). Thus

L(y) = y(n) + a1(x)y(n−1) + ......+ an(x)y, (3.3)

and the equation 3.3 becomes L(y) = b(x).

Definition 3.1 If b(x) = 0 for all x on I, then L(y) = 0 is called a homogeneous equation,
whereas if b(x) 6= 0 for some x in I, then L(y) = b(x) is called a non-homogeneous
equation.

We have that L itself is an operator which takes each function φ, which has n deriva-
tives on I, into the function L(φ) on I whose value at x is given by

L(φ)(x) = φ(n)(x) + a1(x)φ(n−1)(x) + · · ·+ an(x)φ(x).
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Thus, a solution of 3.2 on I is a function φ on I with n derivatives and L(φ) = b.
In this unit, we assume that the complex-valued functions a1, a2, · · · , an, b are con-

tinuous on a real interval I, and L(y) denotes the expression 3.3.

3.2 Initial value problems for the homogeneous equa-
tion

Although it is not always possible to formulate a solution of 3.1 in terms of simple
functions, it can be shown that solutions exist.

Theorem 3.1 (Existence Theorem) Let a1, a2, · · · , an be continuous functions on an in-
terval I containing the point x0. If α1, α2, · · · , αn are any n constants, there exists a
solution φ of

L(y) = y(n) + a1(x)y(n−1) + · · ·+ an(x)y = 0

on I satisfying
φ(x0) = α1, φ

(1)(x0) = α2, · · · , φ(n−1)(x0) = αn.

Theorem 3.2 Let b1, b2, · · · , bn be non-negative constants such that for all x in I

|aj(x)| ≤ bj, (j = 1, 2, · · · , n),

and define k by
k = 1 + b1 + · · ·+ bn.

If x0 is a point in I, and φ is a solution of L(y) = 0 on I, then

||φ(x0)||e−k|x−x0| ≤ ||φ(x)|| ≤ ||φ(x0)||ek|x−x0| (3.4)

for all x in I.

Proof: Let
L(y) = y(n) + a1(x)y(n−1) + · · ·+ an(x)y.

Since φ is a solution of L(y) = 0, we have L(φ) = 0 and

φ(n)(x) + a1(x)φ(n−1)(x) + · · ·+ an(x)φ(x) = 0.

Therefore

|φ(n)(x)| = | − a1(x)φ(n−1)(x)− · · · − an(x)φ(x)|
|φ(n)(x)| ≤ |a1(x)φ(n−1)(x)|+ · · ·+ |an(x)φ(x)|
|φ(n)(x)| ≤ |a1(x)||φ(n−1)(x)|+ · · ·+ |an(x)||φ(x)|.

Since |aj(x)| ≤ bj, we obtain

|φ(n)(x)| ≤ b1|φ(n−1)(x)|+ · · ·+ bn|φ(x)|. (3.5)

Let

u(x) = ||φ(x)||2
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u(x) = |φ(x)|2 + |φ′(x)|2 + · · ·+ |φ(n−1)(x)|2

u(x) = φ(x)φ(x) + φ′(x)φ′(x) + · · ·+ φ(n−1)(x)φ(n−1)(x)

u′(x) = φ′(x)φ(x) + φ(x)φ′(x) + φ′′(x)φ′(x) + φ′(x)φ′′(x) + · · ·+ φ(n)(x)φ(n−1)(x)

+ φ(n−1)(x)φ(n)(x)

|u′(x)| ≤ |φ′(x)φ(x)|+ |φ(x)φ′(x)|+ |φ′′(x)φ′(x)|+ |φ′(x)φ′′(x)|+ · · ·
+ |φ(n)(x)φ(n−1)(x)|+ |φ(n−1)(x)φ(n)(x)|

|u′(x)| ≤ |φ′(x)||φ(x)|+ |φ(x)||φ′(x)|+ |φ′′(x)||φ′(x)|+ |φ′(x)||φ′′(x)|+ · · ·
+ |φ(n)(x)||φ(n−1)(x)|+ |φ(n−1)(x)||φ(n)(x)|

|u′(x)| ≤ 2|φ(x)||φ′(x)|+ · · ·+ 2|φ(n−1)(x)|[b1|φ(n−1)(x)|+ b2|φ(n−2)(x)|+ · · ·+ bn|φ(x)|]
≤ 2|φ(x)||φ′(x)|+ 2|φ′(x)||φ′′(x)|+ · · ·+ 2b1|φ(n−1)(x)||φ(n−1)(x)|

+ 2b2|φ(n−1)(x)||φ(n−2)(x)|+ · · ·+ 2bn|φ(n−1)(x)||φ(x)|.

Using the result 2|b||c| ≤ |b|2 + |c|2, we obtain

|u′(x)| ≤ |φ(x)|2 + |φ′(x)|2 + |φ′(x)|2 + |φ′′(x)|2 + · · ·+ b1|φ(n−1)(x)|2 + b1|φ(n−1)(x)|2

+ b2|φ(n−1)(x)|2 + b2|φ(n−2)(x)|2 + · · ·+ bn|φ(n−1)(x)|2 + bn|φ(x)|2

≤ (1 + bn)|φ(x)|2 + (2 + bn−1)|φ′(x)|2 + · · ·+ (1 + 2b1 + b2 + · · ·+ bn)|φn−1(x)|2

≤ (2 + 2b1 + 2b2 + · · ·+ 2bn)|φ(x)|2 + (2 + 2b1 + 2b2 + · · ·+ 2bn)|φ′(x)|2 + · · ·
+ (2 + 2b1 + 2b2 + · · ·+ 2bn)|φ(n−1)(x)|2

≤ 2(1 + b1 + b2 + · · ·+ bn)[|φ(x)|2 + |φ′(x)|2 + · · ·+ |φ(n−1)(x)|2]

|u′(x)| ≤ 2(1 + b1 + b2 + · · ·+ bn)u(x)

|u′(x)| ≤ 2ku(x)

−2ku(x) ≤ u′(x) ≤ 2ku(x).

Let x > x0. Consider the right side of the above inequality,

u′(x) ≤ 2ku(x)

u′(x)

u(x)
≤ 2k∫ x

x0

u′(x)

u(x)
dx ≤ 2k

∫ x

x0

dx

[log u(x)]xx0 ≤ 2k[x]xx0
log u(x)− log u(x0) ≤ 2k(x− x0)

log
u(x)

u(x0)
≤ 2k(x− x0)

u(x)

u(x0)
≤ e2k(x−x0)

u(x) ≤ e2k(x−x0)u(x0)

||φ(x)||2 ≤ e2k(x−x0)||φ(x0)||2
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Taking square root on both sides,

||φ(x)|| ≤ ek(x−x0)||φ(x0)||. (3.6)

Similarly, if we consider the left side of the inequality, then we obtain

||φ(x)|| ≥ e−k(x−x0)||φ(x0)||. (3.7)

From 3.6 and 3.7, we have

e−k(x−x0)||φ(x0)|| ≤ ||φ(x)|| ≤ ek(x−x0)||φ(x0)||.

Similarly, we can prove the inequality for x < x0. Finally, we get

||φ(x0)||e−k|x−x0| ≤ ||φ(x)|| ≤ ||φ(x0)||ek|x−x0|.

Theorem 3.3 (Uniqueness Theorem) Let x0 be in I, and let α1, α2, · · · , αn be any n
constants. There is at most one solution φ of L(y) = 0 on I satisfying

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn. (3.8)

Proof:
Let φ and ψ be two solutions of L(y) = 0 on I satisfying the condition 3.8 at x0.

ψ(x0) = α1, ψ
′(x0) = α2, · · · , ψ(n−1)(x0) = αn. (3.9)

Consider χ = φ− ψ.
To prove: χ(x) = 0 for all x on I.
Even though the functions aj are continuous on I they need not be bounded there.
However let x 6= x0 be any point on I and let J be any closed bounded interval in I
which contains x0 and x. On this interval the functions aj are bounded, that is,

|aj(x)| < bj, (j = 1, 2, · · · , n),

on J for some constant bj, which may depend on J . Now we can apply above theorem
to χ defined on J . We have L(χ) = 0 on J , and

χ(x) = φ(x)− ψ(x)

χ(x0) = φ(x0)− ψ(x0)

= α1 − α1

= 0.

χ′(x0) = φ′(x0)− ψ′(x0)

= α2 − α2

= 0.

...

χ(n−1)(x0) = φ(n−1)(x0)− ψ(n−1)(x0)

= αn − αn.
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This implies, ||χ(x0)|| = 0.
By previous theorem,

||χ(x0)||e−k|x−x0| ≤ ||χ(x)|| ≤ ||χ(x0)||ek|x−x0|

0 ≤ ||χ(x)|| ≤ 0

||χ(x)|| = 0

=⇒ χ(x) = 0, ∀x ∈ I
=⇒ φ(x)− ψ(x) = 0, ∀x ∈ I.

Hence

φ(x) = ψ(x), ∀x ∈ I.

3.2.1 Solutions of the homogeneous equation

If φ1, φ2, · · · , φm are any m solutions of n-th order equation L(y) = 0 on an interval I,
and c1, c2, · · · , cm are any m constants, then

L(c1φ1 + c2φ2 + · · ·+ cmφm) = c1L(φ1) + c2L(φ2) + · · ·+ cmL(φm),

which implies that c1φ1 + c2φ2 + · · · + cmφm is also a solution. That is, any linear
combination of solutions is again a solution. The trivial solution is the function which
is identically zero on I.

As in the case of an L with constant coefficients, every solution of L(y) = 0 is a
linear combination of any n linearly independent solutions.

Definition 3.2 The n functions φ1, φ2, · · · , φn defined on an interval I are said to be
linearly independent if the only constants c1, c2, · · · , cn, such that

c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) = 0,

for all x in I are the constants c1 = c2 = · · · = cn = 0.

Theorem 3.4 There exist n linearly independent solutions of L(y) = 0 on I.

Proof:
Let x0 be a point in I. According to Theorem 3.1 there is a solution φ1 of L(y) = 0
satisfying

φ1(x0) = 1, φ′1(x0) = 0, · · · , φ(n−1)
1 (x0) = 0.

In general for each i = 1, 2, · · · , n there is a solution φi satisfying

φ
(i−1)
i (x0) = 1, φ

(j−1)
i (x0) = 0, j 6= i. (3.10)

The solutions φ1, φ2, · · · , φn are linearly independent on I, for suppose there are con-
stants c1, c2, · · · , cn such that

c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) = 0, (3.11)
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for all x in I. Differentiating we get

c1φ
′
1(x) + c2φ

′
2(x) + · · ·+ cnφ

′
n(x) =0

c1φ
′′
1(x) + c2φ

′′
2(x) + · · ·+ cnφ

′′
n(x) =0

... (3.12)

c1φ
(n−1)
1 (x) + c2φ

(n−1)
2 (x) + · · ·+ cnφ

(n−1)
n (x) =0

for all x in I. In particular, the equations 3.11, 3.12 must hold at x0. Putting x = x0

in 3.11 we find, using 3.10 that c11 + 0 + · · · + 0 = 0, or c1 = 0. Putting x = x0 in the
equations 3.12 we obtain c2 = c3 = · · · = cn = 0, and thus the solutions φ1, φ2, · · · , φn
are linearly independent.

Theorem 3.5 Let φ1, φ2, · · · , φn be the n solutions of L(y) = 0 on I satisfying 3.10. If φ
is any solution of L(y) = 0 on I, then there are n constants c1, c2, · · · , cn such that

φ = c1φ1 + · · ·+ cnφn.

Proof:
Let

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn,

and consider the function

ψ = α1φ1 + α2φ2 + · · ·+ αnφn.

It is solution of L(y) = 0, and clearly

ψ(x0) = α1φ1(x0) + α2φ2(x0) + · · ·+ αnφn(x0) = α1,

since

φ1(x0) = 1, φ2(x0) = 0, · · · , φn(x0) = 0.

Using the other relation in 3.10 we see that

ψ(x0) = α1, ψ
′(x0) = α2, · · · , ψ(n−1)(x0) = αn.

Thus ψ is a solution of L(y) = 0 having the same initial conditions at x0 as φ. By
uniqueness theorem, we must have φ = ψ, that is, c1 = α1, c2 = α2, · · · , cn = αn.

Definition 3.3 A set of functions which has the property that, if φ1, φ2 belong to the set,
and c1, c2 are any two constants, then c1φ1 +c2φ2 belongs to the set also, is called a Linear
space of functions.

We have just seen that the set of all solutions of L(y) = 0 on an interval I is a linear
space of functions.

Definition 3.4 If a linear space of functions contains n functions φ1, · · · , φn which are
linearly independent and such that every function in the space can be represented as a
linear combination of these, then φ1, · · · , φn is called a basis for the linear space, and the
dimension of the linear space is the integer n.
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The above theorem states that the functions φ1, · · · , φn satisfying the initial con-
ditions 3.10 form a basis for the solutions of L(y) = 0 on I, and this linear space of
functions has dimension n.

Let us sum up

1. We have defined linear differential equation of order n with variable coefficients.

2. We have discussed the existence and uniqueness theorem of the initial value
problem for linear differential equation of order n with variable coefficients.

3. We have proved the inequality for x < x0, we get

||φ(x0)||e−k|x−x0| ≤ ||φ(x)|| ≤ ||φ(x0)||ek|x−x0|.

4. We have characterized the any linear combination of solutions is again a solution.

5. Finally, we defined the linear space and basis of the linear space.

Check your progress

1. State the existence theorem for solutions of a nth order initial value problem,
with variable coefficients.

2. State the uniqueness theorem for solutions of a nth order initial value problem,
with variable coefficients.

3.3 The Wronskian and linear independence

To demonstrate that any set of n linearly independent solutions of L(y) = 0 can serve
as a basis for the solutions of L(y) = 0, we consider the Wronskian W (φ1, φ2, · · · , φn).
Remember that this is defined as the determinant

W (φ1, φ2, · · · , φn) =

∣∣∣∣∣∣∣∣∣
φ1 φ2 · · · φn
φ′1 φ′2 · · · φ′n
...

... · · · ...
φ

(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n

∣∣∣∣∣∣∣∣∣ .

Theorem 3.6 If φ1, φ2, · · · , φn are n solutions of L(y) = 0 on an interval I, then they
are linearly independent there if, and only if,

W (φ1, φ2, · · · , φn) 6= 0, ∀x ∈ I.

Proof:
First suppose W (φ1, φ2, · · · , φn)(x) 6= 0 for all x in I. If there are constants c1, c2, · · · , cn
such that

c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) = 0 (3.13)
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for all x in I, then clearly

c1φ
′
1(x) + c2φ

′
2(x) + · · ·+ cnφ

′
n(x) =0

c1φ
′′
1(x) + c2φ

′′
2(x) + · · ·+ cnφ

′′
n(x) =0

... (3.14)

c1φ
(n−1)
1 (x) + c2φ

(n−1)
2 (x) + · · ·+ cnφ

(n−1)
n (x) =0

for all x in I. For a fixed x in I the equations 3.13, 3.14 are n linear homoge-
neous equations satisfied by c1, c2, · · · , cn. The determinant of the coefficients is just
W (φ1, φ2, · · · , φn)(x), which is not zero. Hence there is only one solution to this sys-
tem, namely c1 = c2 = · · · = cn = 0.
Therefore φ1, φ2, · · · , φn are linearly independent on I.

Conversely, suppose φ1, φ2, · · · , φn are linearly independent on I. Suppose there is
an x0 in I such that

W (φ1, φ2, · · · , φn)(x0) = 0.

Then this implies that the system if n linear equations

c1φ1(x0) + c2φ2(x0) + · · ·+ cnφn(x0) =0

c1φ
′
1(x0) + c2φ

′
2(x0) + · · ·+ cnφ

′
n(x0) =0

... (3.15)

c1φ
(n−1)
1 (x0) + c2φ

(n−1)
2 (x0) + · · ·+ cnφ

(n−1)
n (x0) =0

has a solution c1, c2, · · · , cn where not all the constants c1, c2, · · · , cn are zero. Let
c1, c2, · · · , cn be such a solution, and consider the function

ψ = c1φ1 + c2φ2 + · · ·+ cnφn.

Now L(ψ) = 0, and from 3.15 we get

ψ(x0) = 0, ψ′(x0) = 0, · · · , ψ(n−1)(x0) = 0.

From the uniqueness theorem it follows that ψ(x) = 0 for all x ∈ I, and thus

c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) = 0,

for all x in I. But this contradicts the fact that φ1, φ2, · · · , φn are linearly independent
on I. Thus the supposition that there was a point x0 in I such that

W (φ1, φ2, · · · , φn)(x0) = 0

must be false. We have consequently proved that

W (φ1, φ2, · · · , φn)(x) 6= 0, ∀x ∈ I.
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Theorem 3.7 Let φ1, φ2, · · · , φn be n linearly independent solutions of L(y) = 0 on an
interval I. If φ is any solution of L(y) = 0 on I, it can be represented in the form

φ = c1φ1 + c2φ2 + · · ·+ cnφn

where c1, c2, · · · , cn are constants. Thus any set of n linearly independent solutions of
L(y) = 0 on I is a basis for the solutions of L(y) = 0 on I.

Proof:
Let x0 be a point in I, and suppose

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn.

We show that there exist unique constants c1, c2, · · · , cn such that

ψ = c1φ1 + c2φ2 + · · ·+ cnφn

is a solution of L(y) = 0 satisfying

ψ(x0) = α1, ψ
′(x0) = α2, · · · , ψ(n−1)(x0) = αn.

By the uniqueness theorem we then have φ = ψ, or

φ = c1φ1 + c2φ2 + · · ·+ cnφn.

The initial conditions for ψ are equivalent to the following equations for c1, c2, · · · , cn:

c1φ1(x0) + c2φ2(x0) + · · ·+ cnφn(x0) =α1

c1φ
′
1(x0) + c2φ

′
2(x0) + · · ·+ cnφ

′
n(x0) =α2

... (3.16)

c1φ
(n−1)
1 (x0) + c2φ

(n−1)
2 (x0) + · · ·+ cnφ

(n−1)
n (x0) =αn.

This is set of n linear equations for c1, c2, · · · , cn. The determinant of the coefficients is
W (φ1, φ2, · · · , φn)(x0) , which is not zero since φ1, φ2, · · · , φn are linearly independent
(Theorem 3.6). Therefore there is a unique solution c1, c2, · · · , cn of the equation 3.16,
and this completes the proof.

Theorem 3.8 Let φ1, φ2, · · · , φn be n solutions of L(y) = 0 on an interval I, and let x0

be any point in I. Then

W (φ1, φ2, · · · , φn)(x) = exp

[
−
∫ x

x0

a1(t)dt

]
W (φ1, φ2, · · · , φn)(x0). (3.17)

Proof:
We first prove this result for the simple case n = 2, and then give a proof which is valid
for general n.The latter proof makes use of some general properties of determinants.
Proof for the case n = 2:
In this case

W (φ1, φ2) = φ1φ
′
2 − φ2φ

′
1,
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and therefore

W ′(φ1, φ2) = φ′1φ
′
2 + φ1φ

′′
2 − φ′′1φ2 − φ′1φ′2

= φ1φ
′′
2 − φ′′1φ2.

Since φ1, φ2 satisfy y′′ + a1(x)y′ + a2(x)y = 0, we get

φ′′1 = −a1φ
′
1 − a2φ1,

φ′′2 = −a1φ
′
2 − a2φ2.

Then

W ′(φ1, φ2) =φ1(−a1φ
′
2 − a2φ2)− (−a1φ

′
2 − a2φ1)φ2

=− φ1a1φ
′
2 − φ1a2φ2 + φ2a1φ

′
2 + φ2a2φ1

=− a1(φ1φ
′
2 − φ′1φ2)

=− a1W (φ1, φ2)

W ′(φ1, φ2) + a1W (φ1, φ2) =0.

We see that W (φ1, φ2) satisfies the linear first order equation y′+a1(x)y = 0, and hence

W (φ1, φ2)(x) = c exp

[
−
∫ x

x0

a1(t)dt

]
,

where c is a constant. By putting x = x0, we obtain

c = W (φ1, φ2)(x0),

thus proves 3.17 for the case n = 2.

Proof for a general n:
We let W = W (φ1, φ2, · · · , φn) for brevity. From the definition of W as a determinant
it follows that its derivative W ′ is a sum of n determinants

W ′ = V1 + V2 + · · ·+ Vn,

where Vk differs from W only in its k-th row, and the k-th tow of Vk is obtained by
differentiating the k-th row of W . Thus

W ′ =

∣∣∣∣∣∣∣∣∣∣∣

φ′1 · · · φ′n
φ′1 · · · φ′n
φ′′1 · · · φ′′n
...

...
φ

(n−1)
1 · · · φ

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

φ1 · · · φn
φ′′1 · · · φ′′n
φ′′1 · · · φ′′n
...

...
φ

(n−1)
1 · · · φ

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
+ · · ·+

∣∣∣∣∣∣∣∣∣∣∣

φ1 · · · φn
φ′1 · · · φ′n
φ′′1 · · · φ′′n
...

...
φ

(n)
1 · · · φ

(n)
n

∣∣∣∣∣∣∣∣∣∣∣
The first n − 1 determinant V1, V2, · · · , Vn−1 are all zero, since they each have two
identical rows. Since φ1, φ2, · · · , φn are solutions of L(y) = 0 we have

φ
(n)
i = −a1φ

(n−1)
i − · · · − anφi, (i = 1, 2, · · · , n)
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and therefore

W ′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 · · · φn
φ′1 · · · φ′n
φ′′1 · · · φ′′n
...

...
φ

(n−2)
1 · · · φ

(n−2)
n

−
n−1∑
j=0

an−jφ
(j)
1 · · · −

n−j∑
j=0

an−jφ
(j)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The value of this determinant is unchanged if we multiply any row by a number and
add to the last row. We multiply the first row by an, the second row by a(n−1), · · · , the
(n− 1)− th row by a2, and add these to the last row, obtaining

W ′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 · · · φn
φ′1 · · · φ′n
φ′′1 · · · φ′′n
...

...
φ

(n−2)
1 · · · φ

(n−2)
n

−a1φ
(n−1)
1 · · · −a1φ

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −a1W.

Therefore W satisfies the linear first order equation y′ + a1(x)y = 0, and thus

W (x) = exp

[
−
∫ x

x0

a1(t)dt

]
W (x0).

Corollary 3.1 If the coefficients ak of L are constants, then

W (φ1, φ2, · · · , φn)(x) = e−a1(x−x0)W (φ1, φ2, · · · , φn)(x0).

Proof:
A consequence of Theorem 3.8 is that n solutions φ1, φ2, · · · , φn of

L(y) = 0

on an interval I are linearly independent there if and only if

W (φ1, φ2, · · · , φn)(x0) 6= 0

for any particular x0 in I.

Let us sum up

1. We have proved the properties of the linearly dependent and linearly indepen-
dent solutions by using Wronskian formula.

2. We have characterized the any linear combination of linearly independent solu-
tions is again a linearly independent solution.
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3. Finally, we figured out the Abel’s formula.

Check your progress

1. When r1 6= r2, find Wronskian W [er1x, er2x]?
(a)(r2 − r1)e(r1+r2)x0 (b)(r1 − r2)e(r1+r2)x0

(c)(r2 − r1)e(r1−r2)x0 (d)(r1 − r2)e(r1−r2)x0

2. If φ1 and φ2 are solution of y′′+x2y′+(1−x)y = 0 such that y1(0) = 0, y′1(0) = −1
and y2(0) = −1, y′2(0) = 1, then the W (y1, y2) on R is
(a) never zero
(b) identically zero
(c) zero only at finite number of points
(d) zero at countable infinite number of points.

3.4 Reduction of the order of a homogeneous equation

Suppose we have found by some means one solution φ1 of the equation

L(y) = y(n) + a1(x)y(n− 1) + ...+ an(x)y = 0.

It is then possible to use this information to lower the order of the equation such that it
may be solved by one. The idea is the same as in the variation of constants technique.
We want to find solutions φ to L(y) = 0 of the form φ = uφ1, where u is any function.
If φ = uφ1 is the solution, we must have

0 = uφ1)(n) + a1(uφ1)(n−1) + · · ·+ an−1(uφ1)′ + an(uφ1)

= u(n)φ1 + · · ·+ uφ
(n)
1 + a1u

(n−1)φ1 + · · ·+ a1uφ
(n−1)
1

+ · · ·+ an−1u
′φ1 + an−1uφ

′
1 + anuφ1.

The coefficient of u in the above equation is just L(φ1) = 0. Therefore, if v = u′, this is
a linear equation of order n− 1 in v,

φ1v
(n−1) + · · ·+ [nφ

(n−1)
1 + a1(n− 1)φ

(n−2)
1 + ...+ an−1φ1]v = 0. (3.18)

The coefficient of v(n−1) is φ1, and hence φ1(x) 6= 0 on an interval I this equation has
n− 1 linearly independent solutions v2, · · · , vn on I. If x0 is some point in I, and

uk(x) =

∫ x

x0

vk(t)dt, (k = 2, · · · , n),

then we have u′k = vk, and the functions

φ1, u2φ1, · · · , unφ1 (3.19)

are solutions of L(y) = 0. Moreover these functions form a basis for the solutions of
L(y) = 0 on I. For suppose we have constants c1, c2, · · · , cn such that

c1φ1 + c2u2φ1 + · · ·+ cnunφ1 = 0.
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Since φ1(x) 6= 0 on I this implies

c1 + c2u2 + · · ·+ cnun = 0, (3.20)

and differentiating we obtain

c2u
′
2 + · · ·+ cnu

′
n = 0,

or

c2v2 + · · ·+ cnvn = 0.

Since v2, · · · , vn are linearly independent on I we have

c2 = · · · = cn = 0,

and from 3.20 we obtain c1 = 0 also. Thus the functions in 3.19 form a basis for the
solutions of L(y) = 0 on I.

Theorem 3.9 Let φ1 be a solution of L(y) = 0 on an interval I, and suppose φ1(x) 6= 0
on I. If v2, · · · , vn is any basis on I for the solutions of the linear equation 3.18 of order
n− 1, and if

vk = u′k, (k = 2, · · · , n)

then φ1, u2φ1, · · · , unφ1 is a basis for the solutions of L(y) = 0 on I.

Proof:
Given φ1 is the solution of

L(y) = y(n) + a1(x)y(n−1) + ...+ an(x)y = 0.

Now, we find the solution of L(y) = 0 of the term φ = uφ1, where u is some function.

L(uφ1) =(uφ1)n + a1(uφ1)(n−1) + · · ·+ an(uφ1)

=unφ1 + nc1u
(n−1)φ′1 + · · ·+ uφn1

+ a1[un−1φ1 + (n− 1)c1u
(n−2)φ′1 + · · ·

+ uφ
(n−1)
1 ] + · · ·+ a(n−1)[u

′φ1 + uφ′1] + anuφ1

=φ1u
n + [nφ

(1)
1 + a1φ1]u(n−1) + · · ·+ [nφ

(n−1)
1 + a1(n− 1)φ

(n−2)
1

+ · · ·+ an−1φ1]u′ + [φ
(n)
1 + a1φ

(n−1)
1 + · · ·+ anφ1]u.

The coefficient of u in the above equation is

φ
(n)
1 + a1φ

(n−1)
1 + · · ·+ anφ1.

Since φ1 is solution of L(y) = 0, we have

φ
(n)
1 + a1φ

(n−1)
1 + · · ·+ anφ1 = 0.
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If u′ = v, then

φ1v
n−1 +[nφ

(1)
1 +a1φ1]vn−2 + · · ·+[nφ

(n−1
1 +a1(n−1)φ

(n−2)
1 + · · ·+an−1φ1]v = 0. (3.21)

Given: v2, · · · , vn are (n− 1) linearly independent solution of L(y) = 0. If x0 is a point
in I and

uk =

∫ x

x0

vk(t)dy.

Thus u2, · · · , un is a solution of equation L(y) = 0. Therefore, φ1, u2φ1, · · · , unφ1 is a
basis for the solutions of L(y) = 0 on I.
Consider the constant

c1φ1 + c2φ1u2 + · · ·+ cnunφ1 = 0. (3.22)

Given: φ1(x) 6= 0 on I
By dividing φ1(x) on equation 3.22, we get.

c1 + c2u2 + · · ·+ cnun = 0. (3.23)

Differentiate the above equation with respect to x on both sides, then we have

c2u
′
2 + c3u

′
3 + · · ·+ cnu

′
n = 0

=⇒ c2v2 + c3v3 + · · ·+ cnvn = 0[u′k = vk].

We have that v2, · · · , vn are linearly independent. This implies that

c1 = c2 = · · · = cn = 0,

and φ1, u2φ1, · · · , unφ1 are linearly independent. Hence φ1, u2φ1, · · · , unφ1 is a basis for
the solutions of L(y) = 0 on I.

Theorem 3.10 If φ1 is a solution of

L(y) = y′′ + a1(x)y′ + a2(x)y = 0 (3.24)

on an interval I, and φ1(x) 6= 0 on I, a second solution φ2 of 3.24 on I is given by

φ2(x) = φ1(x)

∫ x

x0

1

[φ1(s)]2
exp

[
−
∫ x

x0

a1(t)dt

]
. (3.25)

The functions φ1, φ2 form a basis for the solutions of 3.24 on I.

Proof:
Let φ1 be a solution of L(y) = 0. Then we have L(φ1) = 0, that is,

φ′′1 + a1(x)φ′1 + a2(x)φ1 = 0. (3.26)

Our aim is to find a solution φ2 of L(y) = 0. There is φ2 = uφ1 where u is a function.
Since φ2 is a solution of L(y) = 0, then L(φ2) = 0. Therefore,

φ′′2 + a1(x)φ′2 + a2(x)φ2 = 0

(uφ1)′′ + a1(x)(uφ1)′ + a2(x)(uφ1) = 0
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[u′′φ1 + u′φ′1 + uφ′′1] + a1(x)[u′φ1 + uφ′1] + a2(x)(uφ1) = 0

u′′φ1 + [2φ′1 + a1(x)φ′1]u′ + [φ′′1 + a1(x)φ′1 + a2(x)φ1]u = 0.

Then by the equation 3.26 we have,

u′′φ1 + [2φ′1 + a1(x)φ′1]u′ = 0. (3.27)

Take u′ = v. Then

φ1v
′ + [2φ′1 + a1(x)φ1]v = 0

φ1v
′ + 2φ′1v + a1(x)φ1v = 0

Multiply the above equation by φ1

=⇒ φ2
1v
′ + 2φ1φ

′
1v + a1(x)φ2

1v = 0

=⇒ (φ2
1v)′ + a1(x)(φ2

1v) = 0. (3.28)

If we take φ2v = y, then it becomes

y′ + a1(x)y = 0.

Therefore

(φ2
1v)e

∫ x

x0

a1(x)dx
=

∫
0e

∫ x

x0

a1(x)dx
dx+ c

(φ2
1v)e

∫ x

x0

a1(x)dx
= c.

Thus, we have

(φ2
1v) = ce

−
∫ x
x0
a1(x)dx

,

where x0 is a point in I and c is constant. Since any constant multiple of a solution is
again a solution, we get

[φ2
1(x)]v(x) = e

−

∫ x

x0

a1(x)dx

v(x) =
1

[φ1(x)]2
e
−

∫ x

x0

a1(x)dx

is a solution of equation 3.24,

u(x) =

∫ x

x0

1

[φ1(s)]2
e
−

∫ s

x0

a1(x)dx
ds.

Thus

φ2(x) = φ1(x)

∫ x

x0

1

[φ1(s)]2
e
−

∫ s

x0

a1(x)dx
ds.

Since L(y) = y′′ + a1(x)y′ + a2(x)y = 0 has two linearly independent solutions on I.
Hence φ1, φ2 form a basis for the solutions of L(y) = y′′ + a1(x)y′ + a2(x)y = 0 on I.
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Example 3.1 Find the basis for the solutions of the equation y′′− 2
x2
y = 0 on 0 < x <∞.

Solution:
It is clear that the function φ1 given by φ1(x) = x2 is a solution on 0 < x <∞, and since
this function does not vanish on this interval there is another independent solution φ1

of the form φ2 = uφ1. If v = u′0 we find that v satisfies

x2v′ + 4xy = 0, or xy′ + 4v = 0.

A solution for this is given by

v(x) = x−4, (0 < x <∞),

and therefore a choice for u is

u(x) = − 1

3x2
(0 < x <∞).

This implies

φ1(x) = − 1

3x
, (0 < x <∞),

but since any constant times a solution is a solution, we may as well choose for a sec-
ond solution φ2(x) = x−1. Hence x2, x−1 form a basis for the solutions on (0 < x <∞).

Let us sum up

1. We have characterized the homogeneous equation of order n.

2. We have defined the basis of homogeneous equation of order n.

3. We have rectified the properties of the reduction of the order of a homogeneous
equation.

4. Finally, we solved some illustrative examples.

Check your progress

5. If φ1(x) = x is a solution of x2y′′−xy′+ y = 0 for x > 0, then the second solution
is
(a) φ2(x) = x−1 (b) φ2(x) = xlogx (c) φ2(x) = x2 (d) φ2(x) = x

6. Two solutions φ of x3y′′′ − 3xy′ + 3y = 0, x > 0 are φ1(x) = x, φ2(x) = x2. Find
the third Independent solution.
(a) φ3(x) = x−1 (b) φ3(x) = x2 (c) φ3(x) = x3 (d) φ3(x) = x−2

3.5 Homogeneous equations with analytic coefficients

If g is a function defined on an interval I containing a point x0, we say that g is analytic
at x0 if g can be expanded in a power series about x0 which has a positive radius of
convergence. Thus g is analytic at x0 if it can be represented in the form

g(x) =
∞∑
k=0

ck(x− x0)k, (3.29)
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where the ck are constants, and the series converges for |x − x0| < r0, r0 > 0, all of
its derivatives exist on |x− x0| < r0, and they may be computed by differentiating the
series term by term. Thus, for example

g′(x) =
∞∑
k=1

kck(x− x0)k−1,

and

g′′(x) =
∞∑
k=2

k(k − 1)ck(x− x0)k−2,

and the differentiated series converge on |x− x0| < r0 also.

Theorem 3.11 (Existence Theorem for Analytic Coefficients) Let x0 be a real number,
and suppose that the coefficients a1, · · · , an in

L(y) = y(n) + a1(x)y(n−1) + · · ·+ an(x)y

have convergent power series expansions in power of x− x0 on an interval

|x− x0| < r0, r0 > 0.

If α1, · · · , αn are any n constants, then there exists a solution φ of the problem

L(y) = 0, y(x0) = α1, · · · , y(n−1)(x0) = αn,

with a power series expansion

φ(x) =
∞∑
k=0

ck(x− x0)k (3.30)

convergent for |x− x0| < r0. We have

k!ck = αk+1, (k = 0, 1, · · · , n− 1),

and ck for k ≥ n may be computed in terms of c0, c1, · · · , cn−1 by substituting the series
3.58 into L(y) = 0.

Proof:
Let us consider the two power series,

∞∑
k=0

ckx
k,

∞∑
k=0

Ckx
k,

|ck| ≤ Ck, Ck ≥ 0, (k = 0, 1, · · · ),

and that the series
∞∑
k=0

Ckx
k
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converges on |x| < r, for some r > 0. Then the series

∞∑
k=0

ckx
k

also converges for |x| < r. This is usually called the comparison test for convergence.
The second result we require is that if a series

∞∑
k=0

αkx
k (3.31)

is convergent for |x| < r0, then for any x, |x| = r < r0, there is a constant M > 0 such
that

rk|αk| ≤M, (k = 0, 1, · · · ). (3.32)

This is not difficult to show. Since the series 3.31 is convergent for |x| = r its terms
must tend to zero,

|αkxk| = |αk|rk → 0, (k →∞).

In particular there is an integer N > 0 such that

|αk|rk ≤ 1, (k > N).

Let M be the largest number among

|α0|, |α1|r, · · · , |αN |rN , 1.

Then clearly 3.32 is valid for this M . We now consider the equation

L(y) = y′′ + a1(x)y′ + b(x)y = 0, (3.33)

where a, b are functions having expansions

a(x) =
∞∑
k=0

αkx
k, b(x) =

∞∑
k=0

βkx
k, (3.34)

which converge for |x| < r0 for some r0 > 0. Given any constants α1, α2 we want to
produce a solution φ of 3.33 satisfying

φ0 = α1, φ′(0) = α2,

and which can be written in the form

φ(x) =
∞∑
k=0

ckx
k, (3.35)

where the series converges for |x| < r0. If this series is convergent we must have

c0 = α1,
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and the constants ck(k ≤ 2) must satisfy a relation, which we now compute. We have

φ′(x) =
∞∑
k=0

(k + 1)ck+1x
k,

and

φ′(x) =
∞∑
k=0

(k + 2)(k + 1)ck+2x
k. (3.36)

Now we obtain

a(x)φ′(x) =

(
∞∑
k=0

αkx
k

)(
∞∑
k=0

(k + 1)ck+1x
k

)

a(x)φ′(x) =
∞∑
k=0

(
k∑
j=0

αk−j(j + 1)cj+1

)
xk, (3.37)

and

b(x)φ(x) =

(
∞∑
k=0

βkx
k

)(
∞∑
k=0

ckx
k

)

=
∞∑
k=0

(
k∑
j=0

βk−jcj

)
xk. (3.38)

Adding the above equations we get

L(φ)(x) =
∞∑
k=0

[
(k + 1)(k + 2)ck+2 +

k∑
j=0

αk−j(j + 1)cj+1 +
∑

βk−jcj

]
xk = 0.

Thus the ck must satisfy

(k + 2)(k + 1)ck+2 = −

[
k∑
j=0

αk−j(j + 1)cj+1 +
∑

βk−jcj

]
, (3.39)

(k = 0, 1, 2 · · · ).
It is enough to show that if the ck, for k ≤ 2 , are defined by 3.36, then the series

∞∑
k=0

ckx
k (3.40)

is convergent for |x| < r0. To prove this we can use of the two results concerning
power series we mentioned earlier. Let r be any number satisfying 0 < r < r0. Since
the series in 3.31 are convergent for |x| = r we have a constant M > 0 such that

|αj| rj ≤M, |βj| rj 5M, (j = 0, 1, 2, · · · ).

Using this in 3.39 we find that

(k + 2)(k + 1) |ck+2| ≤
M

rk

k∑
j=0

[(j + 1) |ci+1|+ |ci|] rj
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≤ M

rk

k∑
j=0

[(j + 1) |cj+1|+ |cj|] rj +M |ck+1| r. (3.41)

Now let us define
C0 = |c0| , C1 = |c1|

and Ck for k ≥ 2 by

(k + 2)(k + 1)Ck+2 =
M

rk

k∑
j=0

[(j + 1)Cj+1 + Cj] r
j +MCk+1r, (3.42)

(k = 0, 1, 2, · · · ). Comparing 3.41 with 3.42 we have

|ck| 5 Ck, Ck = 0, (k = 0, 1, 2, · · · ). (3.43)

Now, we have to find for which x the series

∞∑
k=0

Ckx
k (3.44)

is convergent. We find that

(k + 1)kCk+1 =
M

rk−1

k−1∑
j=0

[(j + 1)Cj+1 + Ci] r
j +MCkr

and

k(k − 1)Ck =
M

rk−1

k∑
j=1

[(j + 1)Cj+1 + Ci] r
j +MCk−1r1

for large k. From these expressions we obtain

r(k + 1)kCk+1 =
M

rk−2

k−2∑
j=0

[(j + 1)Cj+1 + Cj] r
j +M [kCk + Ck−1] r +MCkr

2

= k(k − 1)Ck −MCk−1r3 +MkCkr +MCk−1r +MCkr
2

=
[
k(k − 1) +Mkr +Mr2

]
Ck. (3.45)

Hence ∣∣∣∣Ck+1x
k+1

Ckxk

∣∣∣∣ =
[k(k − 1) +Mkr +Mr2]

r(k + 1)k
|x|,

which tends to∞.
Thus, by the ratio test, the series 3.40 converges for |x| < r, and since r was any

number satisfying 0 < r < r0, we have shown at last that the series 3.40 converges for
|x| < r0.

Let us sum up

1. We have characterized the homogeneous equation with analytic coefficients with
examples.
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2. We have discussed the existence theorem for analytic coefficients.

3. Also, we defined the comparison test for convergence for proving the existence
result.

Check your progess

7. State Existence Theorem for Analytic Coefficients.

3.6 The Legendre equation

Some of the important differential equations met in physical problems are second
order linear equation with analytic coefficients. One of these is the Legendre equation

L(y) = (1− x2)y′′ − 2xy′ + α(α + 1)y = 0, (3.46)

where α is a constant.
Dividing 3.46 by (1− x2), we obtain the standard form of given equation as

y′′ − 2x

1− x2
y′ +

α(α + 1)

1− x2
y = 0. (3.47)

The coefficients of the resulting equations

a1(x) =
−2x

1− x2
,

a2(x) =
α(α + 1)

1− x2
,

are analytic at x = 0. Indeed,

1

1− x2
= 1 + x2 + x4 + · · · =

∞∑
k=0

x2k,

and this series converges for |x| < 1. Thus a1 and a2 have the series expansions

a1(x) =
∞∑
k=0

(−2)x2k+1,

a2(x) =
∞∑
k=0

α(α + 1)x2k,

which converge for |x| < 1. From Theorem 3. 12 it follows that the solutions of
L(y) = 0 on |x| < 1 have convergent power series expansion there. We proceed to find
a basis for these solutions.

Let φ be any solution of the Legendre equation on |x| < 1, and suppose

φ(x) = c0 + c1x+ c2x
2 + · · · =

∞∑
k=0

ckx
k. (3.48)
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We have

φ′(x) = c1 + 2c2x+ 3c3x
2 + · · · =

∞∑
k=0

kckx
k−1,

−2xφ′(x) =
∞∑
k=0

−2kckx
k,

φ′′(x) = 2c2 + 3 · 2c3x+ · · · =
∞∑
k=0

k(k − 1)ckx
k−2,

−x2φ′′(x) =
∞∑
k=0

−k(k − 1)ckx
k.

Note that φ′′(x) may also be written as

φ′′(x) =
∞∑
k=0

(k + 2)(k + 1)ck+2x
k, (3.49)

Since φ is a solution of L(y) = 0, we get

(1− x2)φ′′(x)− 2xφ′(x) + α(α + 1)φ(x) = 0. (3.50)

Substitute φ(x), φ′(x), φ′′(x) values in the above equation, we get

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=0

−k(k − 1)ckx
k − 2

∞∑
k=0

kckx
k + α(α + 1)

∞∑
k=0

ckx
k =0

∞∑
k=0

[(k + 2)(k + 1)ck+2 − k(k − 1)ck − 2kck + α(α + 1)ck]x
k =0,

∞∑
k=0

[(k + 2)(k + 1)ck+2 + (α + k + 1)(α− k)ck]x
k =0.

We must have all the coefficients of the powers of x equal to zero. Hence

(k + 2)(k + 1)ck+2 + (α + k + 1)(α− k)ck = 0, (k = 0, 1, 2, · · · )

(k + 2)(k + 1)ck+2 = −(α + k + 1)(α− k)ck. (3.51)

This is the recursion relation which gives ck+2 in terms of ck. For k = 0 we obtain

c2 = −(α + 1)α

2
c0,

and for k = 1 we get,

c3 = −(α + 2)(α− 1)

3 · 2
c1.

Similarly, letting k = 2, 3 in 3.51 we obtain

c4 = −(α + 3)(α− 2)

4 · 3
c2 =

(α + 3)(α + 1)α(α− 2)

4 · 3 · 2
c0,
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c5 = −(α + 4)(α− 3)

5 · 4
c3 =

(α + 4)(α + 2)(α− 1)(α− 3)

5 · 4 · 3 · 2
c1.

The pattern now becomes clear, and it follows by induction that for m = 1, 2, · · ·

c2m = (−1)m
(α + 2m− 1)(α + 2m− 3) · · · (α + 1)α(α− 2) · · · (α− 2m+ 2)

(2m)!
c0,

c2m+1 = (−1)m
(α + 2m)(α + 2m− 2) · · · (α + 2)(α− 1)(α− 3) · · · (α− 2m+ 1)

(2m+ 1)!
c1.

All coefficient are determined in terms of c0and c1, and we must have

φ(x) = c0φ1(x) + c1φ2(x),

where

φ1(x) = 1− (α + 1)α

2!
x2 +

(α + 3)(α + 1)α(α− 2)

4!
x4 − · · · ,

or

φ1(x) = 1+
∞∑
m=1

(−1)m
(α + 2m− 1)(α + 2m− 3) . . . (α + 1)α(α− 2) · · · (α− 2m+ 2)

(2m)!
x2m,

(3.52)
and

φ2(x) = x− (α + 2)(α− 1)

3!
x2 +

(α + 4)(α + 2)(α− 1)(α− 3)

5!
x3 − · · · ,

or

φ2(x) = x+
∞∑
m=1

(−1)m
(α + 2m)(α + 2m− 2) · · · (α + 2)(α− 1)(α− 3) · · · (α− 2m+ 1)

(2m+ 1)!
x2m+1.

(3.53)
Both φ1 and φ2 are solutions of the Legendre equation, those corresponding to the
choices

c0 = 1, c1 = 0, and c0 = 0, c1 = 1,

respectively. They form a basis for the solutions, since

φ1(0) =1, φ2(0) = 0,

φ′1(0) =0, φ′2(0) = 1.

We notice that if α is a non-negative even integer

n = 2m, (m = 0, 1, 2, · · · ),

then φ1 has only a finite number of non-zero terms. Indeed, in this case φ1 is a poly-
nomial of degree n containing only even powers of x. For example,

φ1(x) =1, (α = 0),

φ1(x) =1− 3x3, (α = 2),
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φ1(x) =1− 10x2 +
35

8
x4, (α = 4).

The solution φ2 is not a polynomial in this case since none of the coefficients in the
series 3.53 vanish.

A similar situation occurs when α is a positive odd integer n. Then φ2 is a poly-
nomial of degree n having only odd powers of x, and φ1 is not a polynomial. For
example

φ1(x) =x, (α = 1),

φ2(x) =x− 5

3
x3, (α = 3),

φ2(x) =x− 14

8
x3 +

21

5
x5, (α = 5).

We consider in more detail these polynomial solutions when α = n, a non-negative
integer. The polynomial solution Pn of degree n of

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0, (3.54)

satisfying Pn(1) = 1 is called the n-th Legendre polynomial. In order to justify this
definition we must show that there is just one such solution for each non-negative
integer n. This will be established by way of a slight detour, which is of interest in
itself.

Let φ be the polynomial of degree n defined by

φ(x) =
dn

dxn
(x2 − 1)n.

This φ satisfies the Legendre equation 3.54. Indeed, let

u(x) = (x2 − 1)n.

Then we obtain by differentiating

(x2 − 1)u′ − 2nxu = 0.

Differentiating this expression n+ 1 times yields

(x2 − 1)u(n+2) + 2x(n+ 1)u(n+1) + (n+ 1)nu(n) − 2nxu(n+1) − 2n(n+ 1)u(n) = 0.

Since φ = u(n) we obtain

(1− x2)φ′′(x)− 2xφ′(x) + n(n+ 1)φ(x) = 0,

and we have shown that φ satisfies 3.54.
This polynomial φ satisfies

φ(1) = 2nn!.

This can be seen by noting that

φ(x) = [(x2 − 1)n](n) = [(x− 1)n(x+ 1)n](n)
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= [(x− 1)n](n)(x+ 1)n + terms with (x− 1) as a factor
= n!(x+ 1)n + terms with (x− 1) as a factor.

Hence φ(1) = n!2n, as stated.
It is now clear that the function Pn given by

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (3.55)

is the n-th Legendre polynomial, provided we can show that there is no other polyno-
mial solution of 3.54 which is 1 at x = 1.

Suppose ψ is any polynomial solution of 3.54. Then for some constant c we must
have ψ = cφ1 or ψ = cφ2, according as n is even or odd. Here φ1, φ2 are the solutions
of 3.54, 3.55. Suppose n is even, for example. Then, for |x| < 1,

ψ = cφ1 + dφ2

for some constants c, d, since φ1, φ2 form a basis for the solutions on |x| < 1. But then
ψ − cφ1 is a polynomial, whereas dφ2 is not a polynomial in case d 6= 0. Hence d = 0.
In particular the function Pn given by 3.55 satisfies Pn = cφ1 for some constant c, if n
is even. Since 1 = Pn(1) = cφ1(1), we see that φ1(1) 6= 0. A similar result is valid if n
is odd. Thus no non-trivial polynomial solution of the Legendre equation can be zero
at x = 1. From this it follows that there is only one polynomial Pn satisfying 3.54 and
Pn(1) = 1, for if P̃n was another, then Pn − P̃n would be a polynomial solution, and
Pn(1)− P̃n(1) = 0.
The first few Legendre polynomials are

P0(x) =1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
,

P3(x) =
5

2
x3 − 3

2
x, P4(x) =

35

8
x4 − 15

4
x2 +

3

8
.

Let us sum up

1. We have discussed the Legendre’s equations and functions used for solving dif-
ferential equations..

2. We have rectified the solutions of the Legendre equation with suitable examples.

Check your Progress

8. The value of the Legendre polynomial P2(x) is
(a) 3

2
x− 1 (b) 3

2
x2 − 1

2
x3 (c) 3

2
x2 − 1

2
(d) 3

2
− 1

2
x2

9. The value of Legendre polynomial P3(x) is
(a) 5

2
x2 − 3

2
(b)5

2
x3 − 3

2
x (c) 5

2
x2 + 3

2
(d)5

2
x3 + 3

2
x

10. The n-th Legendre polynomials Pn(x) is given by

(a) Pn(x) = − 1

2nn!

dn

dxn
(x2 − 1)n (b) Pn(x) =

1

2nn!

dn

dxn
(x2 + 1)n

(c) Pn(x) =
1

2nn!

dn

dxn
(x3 − 1)n (d) Pn(x) =

1

2nn!

dn

dxn
(x2 − 1)n
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Summary
This unit discusses linear differential equations with variable coefficients. The topics
include:

• Linear Independence and Wronskian: Understanding linear independence of so-
lutions using the Wronskian.

• Reduction of Order: A technique used when one solution of a second-order ODE
is known.

– Given one solution φ1(x), a second solution φ2(x) = v(x)φ1(x) can be found.

• Series Solutions: Used when variable coefficients prevent simple analytic solu-
tions. Methods like Frobenius allow solutions near singular points.

• The Legendre’s differential equation can be solved in series of ascending or de-
scending power of x. The solution in descending powers of x is more important
than the one in ascending powers.

• The solution of Legendre’s equation is called Legendre’s function.

Glossary

• Basis: A basis is a set of linearly independent vectors that span a vector space,
meaning any vector in the space can be expressed as a combination of these basis
vectors.

• Power series: A power series is a way of expressing a function as an infinite
sum of terms that involve powers of a variable. Each term in the series has a
constant coefficient and a certain power of the variable, allowing functions to be
approximated or studied around a specific point.

• Legendre equation: The Legendre equation is a type of differential equation that
arises in problems with spherical symmetry, such as gravitational or electric
fields. Its solutions, known as Legendre polynomials.

• Abel’s formula: Abel’s formula, also known as Abel’s identity, relates the Wron-
skian of two solutions of a second-order linear differential equation to the coef-
ficients of the equation. It shows that the Wronskian either remains constant or
varies exponentially, helping to analyze the behavior of solutions.

Self-assesment questions

1. Let Pn(x) be the Legendre polynomial of degree n and let Pm+1(0) = −m
m+1

pm+1(0),m =

1, 2, · · · . If Pn(0) = −5
16

, then
∫ 1

−1
P 2
n(x)dx =,

(a) 2
13

(b) 2
9

(c) 5
16

(d) 2
5

2. Using the fact that P0(x) = 1 is a solution of

(1− x2)y′′ − 2xy′ = 0,

find a second independent solution by the method of Sec. 3.5.
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3. Verify that the function Q1 defined by

Q1(x) =
x

2
log((1 + x)/(1− x))− 1(|x| < 1),

is a solution of the Legendre equation when α = 1.

4. Show that Pn(−1) = (−1)n.

EXERCISES

1. Consider the equation

L(y) = y′′ + a1(x)y′ + a2(x)y = 0,

where a1, a2 are continuous on some interval I. Let φ1, φ2 and ψ1, ψ2 be two bases
for the solutions of L(y) = 0. Show that there is a non-zero constant k such that

W (ψ1, ψ2)(x) = kW (φ1, φ2)(x).

2. Consider the same equation as in Ex. 1. Show that a1 and a2 are uniquely
determined by any basis φ1, φ2 for the solutions of L(y) = 0 (Hint: Try solving
for a1, a2 from the equations

L(φ1) = 0, L(φ2) = 0

Show that

a1 = −

∣∣∣∣φ1 φ2

φ′′1 φ′′2

∣∣∣∣
W (φ1, φ2)

, a2 =

∣∣∣∣φ′1 φ′2
φ′′1 φ′′2

∣∣∣∣
W (φ1, φ2)

.)

3. Consider the equation
y′′ + α(x)y = 0,

where α is a continuous function on −∞ < x <∞ which is of period ξ > 0. Let
φ1, φ2 be the basis for the solutions satisfying

φ1(0) = 1, φ2(0) = 0,

φ′1(0) = 0, φ′2(0) = 1.

(a) Show that W (φ1, φ2)(x) = 1 for all x.

(b) Show that there is at least one non-trivial solution φ of period ξ if, and only
if,

φ1(ξ) + φ′2(ξ) = 2

(c) Show that there exists a non-trivial solution φ satisfying

φ(x+ ξ) = −φ(x)

if, and only if,
φ1(ξ) + φ′2(ξ) = −2

(Hint: Show that such a φ exists if, and only if,

φ(ξ) = −φ(0)andφ′(ξ) = −φ′(0)

See Ex. 6, Sec. 3.)
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(d) If φ1(ξ) + φ′2(ξ) = −2 show that there exists a non-trivial solution of period
2ξ. (Hint: Use (c). Alternately, use (b) with ξ replaced by ξ.)

4. A differential equation and a function φ1 are given in each of the following.
Verify that the function φ1 satisfies the equation, and find a second independent
solution,

(a) x2y′′ − 7xy′ + 15y = 0, φ1(x) = x3, (x > 0).

(b) y′′ − 4xy′ + (4x2 − 2)y = 0, φ1(x) = ex
2
.

(c) xy′′ − (x+ 1)y′ + y = 0, φ1(x) = ex, (x > 0).

(d) (1− x3)y′′ − 2xy′ + 2y = 0, φ1(x) = x, (0 < x < 1).

(e) y′′ − 2xy′ + 2y = 0, φ1(x) = x, (x > 0).

5. One solution of
x3y′′′ − 3x2y′′ + 6xy′ − 6y = 0

for x > 0 is φ1(x) = x. Find a basis for the solutions for x > 0.

6. Find two linearly independent power series solutions (in powers of x) of the
following equations:

(a) y′′ − xy′ + y = 0

(b) y′′ + 3x2y′ − xy = 0

(c) y′′ − x2y + 0

(d) y′′ + x3y′ + x2y = 0

(e) y′′ + y = 0.

For what values of x do the series converge?

7. Find the solution φ of

y′′ + (x− 1)2y′ − (x− 1)y = 0

in the form

φ(x) =
∞∑
k=0

ck(x− 1)k,

which satisfies φ(1) = 1, φ′(1) = 0. (Hint: Let x− 1 = ξ.)

8. Find the solution φ of
(1 + x2)y′′ + y = 0

of the form

φ(x) =
∞∑
k=0

ckx
k,

which satisfies φ(0) = 0, φ′(0) = 1. (Note: When the equation is written in the
form

y′′ +
1

1 + x2
y = 0,
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it is one with analytic coefficients at x = 0, since

1

1 + x2
= 1− x2 + x4 − x2 + · · · =

∞∑
k=0

(−1)kx2k,

which converges for |x| < 1. However to compute φ it is best to substitute the
series for φ directly into the given equation.) What is the largest r > 0 such that
the series for φ converges for |x| < r?

9. The equation
y′′ + exy = 0

has a solution φ of the form

φ(x) =
∞∑
k=0

ckx
k

which satisfies φ(0) = 1, φ′(0) = 0. Compute c0, c1, c2, c3, c4, c5. (Hint: ck = φk(0)
k!

and φ′′(x) = −exφ(x).)

10. Compute the solution φ of
y′′′ − xy = 0

which satisfies φ(0) = 1, φ′(0) = 0, φ′′(0) = 0.

11. The equation
y′′ − 2xy′ + 2αy = 0,

where α is a constant, is called the Hermite equation.

(a) Find two linearly independent solutions on −∞ < x <∞.
(b) Show that there is a polynomial solution of degree n, in case α = n non-

negative integer.

(c) Show that the polynomial Hn defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

is a solution of the Hermite equation in case α = n is a non-negative integer.
This solution Hn, is called the n-th Hermile polynomial. (Hint: If u(x) =
e−x

2 show that u′(x) + 2xu(x) = 0. Differentiate this equation n times to
obtain

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0 (3.56)

n ≥ 1. Differentiate Hn to obtain

H ′n(x) = 2xHn(x)−Hn+1(x) (3.57)

for n ≥ 0. Use 3.56 and 3.57 to show Hn is a solution of the Hermite
equation.)

(d) Computs H0, H1, H2, H3.
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12. Show that the coefficient of xn in P (x) is

(2n)!

2n(n!)2
.

13. Show that ∫ 1

−1

Pn(x)Pm(x)dx = 0, (n 6= m).

(Hint: Note that

[(1− x2)P ′n]′ = −n(n+ 1)Pn,

[(1− x2)P ′m]′ = −m(m+ 1)Pm.

Hence

Pm[(1− x2)P ′n]′ − Pn[(1− x2)P ′m]′ = {(1− x2)[PmP
′
n − P ′mPn]}′

= [m(m+ 1)− n(n+ 1)]PmPn.

Integrate from −1 to 1.)

14. Show that ∫ 1

−1

P 2
n(x)dx =

2

2n+ 1

(Hint: Let u(x) = (x2 − 1)n. Then from 3.55

Pn(x) =
1

2nn!
u(n)(x).

Show that u(k)(1) = u(k)(−1) = 0 if 0 ≤ k < n. Then, integrating by parts,∫ 1

−1

u(n)(x)u(n)(x)dx = u(n)(x)u(n−1)(x)

∣∣∣∣1
−1

−
∫
u(n+1)(x)u(n−1)(x)dx

= −
∫ 1

−1

u(n+1)(x)u(n−1)(x)dx

= · · · = (−1)n
∫ 1

−1

u(2n)(x)u(x)dx.

= (2n)!

∫ 1

−1

(1− x2)ndx.

To compute the latter integral let x = sin θ, and obtain∫ 1

−1

(1− x2)ndx = 2

∫ π
2

0

cos(2n+1) θdθ =
2(2nn!)2

(2n+ 1)!
.)

Answer for check your progress
1. Existence Theorem: Let a1, a2, · · · , an be continuous functions on an interval I
containing the point x0. If α1, α2, · · · , αn are any n constants, there exists a solution φ
of

L(y) = y(n) + a1(x)y(n−1) + · · ·+ an(x)y = 0
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on I satisfying
φ(x0) = α1, φ

(1)(x0) = α2, · · · , φ(n−1)(x0) = αn.

2. Uniqueness Theorem: Let x0 be in I, and let α1, α2, · · · , αn be any n constants.
There is at most one solution φ of L(y) = 0 on I satisfying

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn.

3. (a) 4. (a) 5. (b) 6. (c)
7. Existence Theorem for Analytic Coefficients: Let x0 be a real number, and suppose
that the coefficients a1, · · · , an in

L(y) = y(n) + a1(x)y(n−1) + · · ·+ an(x)y

have convergent power series expansions in power of x− x0 on an interval

|x− x0| < r0, r0 > 0.

If α1, · · · , αn are any n constants, then there exists a solution φ of the problem

L(y) = 0, y(x0) = α1, · · · , y(n−1)(x0) = αn,

with a power series expansion

φ(x) =
∞∑
k=0

ck(x− x0)k (3.58)

convergent for |x− x0| < r0. We have

k!ck = αk+1, (k = 0, 1, · · · , n− 1),

and ck for k ≥ n may be computed in terms of c0, c1, · · · , cn−1 by substituting the series
3.58 into L(y) = 0.
8. (c) 9. (b) 10. (d)
Suggested Readings

1. E. A. Coddington and N. Levinson. Theory of Ordinary Differential. Equations.
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2. G. F. Simmons, Differential Equations with Applications and Historical Notes,
Tata McGraw Hill, New Delhi, 1974.

3. N. N. Lebedev, Special Functions and Their Applications, Prentice Hall of India,
New Delhi, 1965.
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Unit 4

Linear Equations with Regular Singular
Points

OBJECTIVE:
Following completion of this unit, you will be capable of understanding the concept of
linear equations with regular singular points of homogeneous equations and the less
simple exceptional case. Further, we explain regular and irregular singularities. And
we discuss the significance of the Frobenius method and analyze the general solution
of Bessel’s equation. Finally, we understand how Bessel’s equation is integrated for
n = 0 and explain the concept of recurrence formula for Jα(x).

4.1 Introduction

In this unit we investigate linear equations with variable coefficients

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = 0. (4.1)

We shall assume that the coefficients a0, a1, · · · , an are analytic at some point x0, and
we shall be interested in an important case when a0(x0) = 0.

Definition 4.1 A point x0 such that a0(x0) = 0 is called a singular point of the equation
4.1.

Definition 4.2 We say that the point x0 is a regular singular points for equation 4.1 if
the equation can be written in the form

(x− x0)ny(n) + b1(x− x0)(n−1)y(n−1) + · · ·+ bn(x)y = 0. (4.2)

near x0, where the functions b1, b2, · · · , bn are analytic at x0.

If the functions b1, b2, · · · , bn can be written in the form

bk(x) = (x− x0)kβk(x), (k = 1, · · · , n),

where β1, · · · , βn are analytic at x0, we see that 4.2 becomes

y(n) + β1(x)y(n−1) + · · ·+ βn(x)y = 0 (4.3)
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upon dividing out (x− x0)n. Thus 4.2 is a generalization of the equation with analytic
coefficients.

An equation of the form

c0(x)(x− x0)ny(n) + c1(x)(x− x0)(n−1)y(n−1) + · · ·+ cn(x)y = 0

has a regular singular point at x0 if c0, c1, · · · , cn are analytic at x0, and c0(x0) 6= 0. This
is because we may divide by c0(x), for x near x0, to obtain an equation of the form 4.2

with bk(x) =
ck(x)

c0(x)
, and it can be shown that these bk are analytic at x0.

We first consider the simplest case of an equation, not of the type 4.3, having
a regular singular point. This is the Euler equation, which is the case of 4.2 with
b1, b2, · · · , bn all constants. For x > x0 such solutions φ turn out to be of the form

φ(x) = (x− x0)rσ(x) + (x− x0)sρ(x) log(x− x0),

where r, s are constants, and σ, ρ are analytic at x0. The method used is to show
that the coefficients of the series for the analytic functions σ, ρ can be computed in
a recursive fashion, and then the series obtained actually converge near the singular
point.

Example 4.1 Consider the equation

x2y′′ − y′ − 3

4
y = 0. (4.4)

The origin x0 = 0 is a singular point, but not a regular singular point since the coefficient
−1 of y′ is not of the form xb1(x), where b1 is analytic at 0. We may formally solve this
equation by series

∞∑
k=0

ckx
k, (4.5)

where the coefficients ck satisfy the recursion formula

(k + 1)ck+1 =

(
k2 − k − 3

4

)
ck, (k = 0, 1, 2, · · · ). (4.6)

If c0 6= 0, the ratio test applied to 4.5, 4.6, shows that∣∣∣∣ck+1x
k+1

ckxk

∣∣∣∣ =

∣∣∣∣k2 − k − 3
4

k + 1

∣∣∣∣ |x| → ∞, (4.7)

as k →∞, provided |x| 6= 0.Thus the series 4.5 will only converge for x = 0, and therefore
does not represent a function near x = 0, much less a solution of 4.4.

4.2 The Euler equation

A second order equation having a regular singular point at the origin is the Euler
equation

L(y) = x2y′′ + axy′ + by = 0,

where a, b are constants.We first consider this equation for x > 0, and observe that the
coefficient of y(k) in L(y) is a constant times xk. If r is any constant, xr has the property
that its k-th derivative times xk is a constant times xr.
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Theorem 4.1 Consider the second order Euler equation

x2y′′ + axy′ + by = 0 (a, b constants),

and the polynomial q given by

q(r) = r(r − 1) + ar + b.

A basis for the solutions of the Euler equation on any interval not containing x = 0 is
given by

φ1(x) = |x|r1 , φ2(x) = |x|r2 ,

in case r1, r2 are distinct roots of q, and by

φ1(x) = |x|r1 , φ2(x) = |x|r1 log |x|,

if r1 is a root of q of multiplicity two.

Proof:
Let us consider the second order Euler equation having a regular singular point at the
origin

L(y) = x2y′′ + axy′ + by = 0, (4.8)

where a, b are constants.
We first consider this equation for x > 0, and observe that the coefficient of y(k)

in L(y) is a constant times xk. If r is any constant, xr has the property that its k-
th derivative times xk is a constant times xr. This suggests trying for a solution of
L(y) = 0 a power of x. Let y = xr. Then

y′ = rxr−1, y′′ = r(r − 1)xr−2,

and

L(xr) = x2r(r − 1)xr−2 + axrxr−1 + bxr

= r(r − 1)xr + arxr + bxr

= (r(r − 1) + ar + b)xr

L(xr) = q(r)xr, (4.9)

where q(r) = r(r − 1) + ar + b.
It is clear that if r1 is a root of q, then

L(xr1) = 0.

Thus the function φ1 given by φ1(x) = xr1 is a solution of 4.8 for x > 0.
Case(i): If r2 is the other root of q, and r1 6= r2, we obtain another solution φ2 given
by φ2(x) = xr2 .
Case(ii): If the roots r1 = r2(repeated roots), we obtain

q(r1) = 0, q′(r1) = 0.
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Differentiating L(xr) = q(r)xr with respect to r, we get

∂

∂r
L(xr) = L

(
∂

∂r
xr
)

= L

(
∂

∂r
elog xr

)
= L

(
∂

∂r
er log x

)
= L

(
er log x log x

)
= L

(
elog xr log x

)
= L (xr log x)

= x2(xr log x)′′ + ax(xr log x)′ + b(xr log x). (4.10)

Now

(xr log x)′′ =

(
rxr−1 log x+ xr

1

x

)′
=
(
rxr−1 log x+ xr−1

)′
= r(r − 1)xr−2 log x+ rxr−1 1

x
+ (r − 1)xr−2

= r(r − 1)xr−2 log x+ rxr−2 + (r − 1)xr−2

= xr−2(r − 1)[r log x+ 1] + rxr−2. (4.11)

Substitute the value of 4.10 in 4.11, we get

∂

∂r
L(xr) = x2

[
xr−2(r − 1)[r log x+ 1] + rxr−2

]
+ ax

[
rxr−1 log x+ xr−1

]
+ b(xr log x)

= (1 + r log x)(r − 1)xr + rxr + a [xr(r log x+ 1)] + b(xr log x)

= [(1 + r log x)(r − 1) + r + a(r log x+ 1) + b log x]xr

= [(r − 1) + r(r − 1) log x+ r + ar log x+ a+ b log x]xr

= [(r(r − 1) + ar + b) log x+ r − 1 + r + a]xr

= [q(r) log x+ 2r − 1 + a]xr

= [q(r) log x+ q′(r)]xr

and if r = r1 is a repeated root of q(r), we get q(r1) = 0, q′(r1) = 0. Therefore

∂

∂r
[L(xr1)] = L[xr1 log x] = 0.

Therefore φ2 = xr2 log x is a second solution associated with the root r1. Thus φ1 =
xr1 , φ2 = xr1 log x are solutions of the given equation.

In either case the solutions φ1, φ2 are linearly independent for x > 0.
Case(i):
If r1 6= r2, and c1, c2 are constants such that

c1x
r1 + c2x

r2 = 0, (x > 0),

then

c1 + c2x
r2−r1 = 0, (x > 0). (4.12)

Differentiate with respect to x, we get

0 + (r2 − r1)c2x
r2−r1−1 = 0
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⇒ c2 = 0,

and from 4.12 we obtain c1 = 0 also.
Case(ii):
If r1 = r2, and c1, c2 are constants such that

c1x
r1 + c2x

r1 log x = 0, (x > 0),

Dividing the above equation by xr1, then

c1 + c2 log x = 0, (x > 0). (4.13)

Differentiating with respect to x, we get

0 + c2
1

x
= 0

⇒ c2 = 0,

and from 4.13 we obtain c1 = 0 also.
We define xr for r complex by

xr = er log x, (x > 0).

Then we have
(xr)′ = r(log x)′er log x = rx−1xr = rxr−1,

and
∂

∂r
(xr) =

∂

∂r
(er log x) = (log x)er log x = xr log x,

which are the formulas we used in the calculations.
Now we have to find the solutions of 4.8 for the case x < 0 also. In this case consider
(−x)r, where r is a constant. Then we have for x < 0

y = [(−x)r]⇒ y′ = r(−x)r−1 ⇒ y′′ = r(r − 1)(−x)r−2,

and hence

x[(−x)r]′ = r(−x)r, x2[(−x)r]′′ = r(r − 1)(−x)r.

Thus

L[(−x)r] = x2r(r − 1)(−x)r−2 + ax(−r)(−x)r−1 + b(−x)r

= r(r − 1)(−x)r + ar(−x)r + b(−x)r

= (r(r − 1) + ar + b)(−x)r

= q(r)(−x)r, (x < 0), (4.14)

where q(r) is the polynomial defined by q(r) = r(r − 1) + ar + b.
Thus, L[(−x)r] = 0 if q(r) = 0. (i.e)(−x)r is a solution of L(y) = 0 if and only if r is a
root of the polynomial q(r).

Now, q(r) = r2 + (a− 1)r+ b is a second degree equation. By fundamental theorem
of algebra, q(r) has two roots r1 and r2.
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Case(i):
If r1 6= r2, then φ1(x) = (−x)r1 , φ2(x) = (−x)r2 are the distinct independent solutions
of L(y) = 0 for x < 0.
Case(ii):
If r1 = r2, clearly (−x)r1 is a solution of L(y) = 0. Since r1 is a repeated root of q(r),
we have q(r1) = 0, q′(r1) = 0. Now

∂

∂r
(L(−x)r) = L

(
∂

∂r
(−x)r

)
= L

(
∂

∂r
elog(−x)r

)
= L

(
∂

∂r
er log(−x)

)
= L

(
er log(−x) log(−x)

)
= L

(
elog(−x)r log(−x)

)
= L [(−x)r log(−x)] (4.15)

and
∂

∂r
[q(r)(−x)r] =

∂

∂r

[
q(r)elog(−x)r

]
=

∂

∂r

[
q(r)er log(−x)

]
= q(r)er log(−x) log(−x) + q′(r)er log(−x)

= q(r)(−x)r log(−x) + q′(r)(−x)r

= [q(r) log(−x) + q′(r)] (−x)r. (4.16)

Now equating the equations 4.15 and 4.16, we get

L [(−x)r log(−x)] = [q(r) log(−x) + q′(r)] (−x)r.

If r = r1

L [(−x)r1 log(−x)] = [q(r1) log(−x) + q′(r1)] (−x)r1 .

This implies that (−x)r1 log(−x) is a solution of L(y) = 0. Thus φ1(x) = (−x)r1 and
φ2(x) = (−x)r1 log(−x) are the solutions of L(y) = 0.
For x > 0,

φ1(x) = xr1 , φ2(x) = xr2 , if r1 6= r2,

φ1(x) = xr1 , φ2(x) = xr1 log x, if r1 = r2.

For x < 0,

φ1(x) = (−x)r1 , φ2(x) = (−x)r2 , if r1 6= r2,

φ1(x) = (−x)r1 , φ2(x) = (−x)r1 log(−x), if r1 = r2.

Since |x| = x for x > 0, and |x| = −x for x < 0, we can write the solutions for any
x 6= 0
in the following way:

φ1(x) = |x|r1 , φ2(x) = |x|r2 , (x 6= 0)

in case r1 6= r2, and

φ1(x) = |x|r1 , φ2(x) = |x|r1 log |x|, (x 6= 0)

in case r1 = r2.
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Example 4.2 Find a basis for the the solutions of the equation

x2y′′ + xy′ + y = 0

for the case x 6= 0.

Solution:
Given x2y′′ + xy′ + y = 0. The polynomial q is given by

q(r) = r(r − 1) + r + 1

= r2 − r + r + 1

= r2 + 1.

Its roots are r1 = i, r2 = −i. Thus a basis for the the solutions is given by

φ1(x) = |x|i, φ2(x) = |x|−i, (x 6= 0),

where we have |x|i = ei log |x|.
Note that in this case another basis ψ1, ψ2 is given by

ψ1(x) = cos(log |x|), ψ2(x) = sin(log |x|), (x 6= 0).

Theorem 4.2 Let r1, r2, · · · , rs be the distinct roots of the indicial polynomial q for

L(y) = xny(n) + a1x
n−1y(n−1) + · · ·+ any = 0, (4.17)

and suppose r1 has multiplicity m1. Then the n functions

|x|r1 , |x|r1 log |x|, · · · , |x|r1 logm1−1 |x|;
|x|r2 , |x|r2 log |x|, · · · , |x|r2 logm2−1 |x|;

...

|x|rs , |x|rs log |x|, · · · , |x|rs logms−1 |x|

form a basis for the solution of the n-th order Euler equation 4.17 on any interval not
containing x = 0.

Proof:
For any constant r, we have

y = |x|r,
y′ = (|x|r)′ = r|x|r−1

y′′ = (|x|r)′′ = r(r − 1)|x|r−2

...

yk = (|x|r)k = r(r − 1) · · · (r − k + 1)|x|r−k

x(k)(|x|r)k = r(r − 1) · · · (r − k + 1)|x|r.

Then

L(|x|r) = xkr(r − 1) · · · (r − k + 1)|x|r−k + a1x
k−1r(r − 1) · · · (r − k)|x|r−k−1 + · · ·+ ak|x|r

93



= r(r − 1) · · · (r − k + 1)|x|r + a1r(r − 1) · · · (r − k)|x|r + · · ·+ ak|x|r

= (r(r − 1) · · · (r − k + 1) + a1r(r − 1) · · · (r − k) + · · ·+ ak)|x|r

= q(r)|x|r, (4.18)

where q is the polynomial of degree n defined by

q(r) = r(r − 1) · · · (r − n+ 1) + a1r(r − 1) · · · (r − n+ 2) + · · ·+ an.

This polynomial is called the indicial polynomial for the Euler equation 4.17. We
obtain

∂k

∂rk
(L|x|r) = L

(
∂k

∂rk
|x|r
)

= L

(
∂k

∂rk
elog |x|r

)
= L

(
∂k

∂rk
er log |x|

)
= L

(
er log |x| log |x|

)
= L

(
elog |x|r log |x|

)
= L (|x|r log |x|)

∂k

∂rk
(L|x|r) =

[
qk(r) + kq(k−1)(r) log |x|

+
k(k − 1)

2!
q(k − 2)(r) log2 |x|+ · · ·+ q(r) logk |x|

]
|x|r. (4.19)

If r1 is a root of q of multiplicity m1, then

q(r1) = 0, q′(r1) = 0, · · · qm1−1(r1) = 0,

and we see that |x|r1 , |x|r1 log |x|, · · · , |x|r1 logm1−1 |x| are the solutions of L(y) = 0.
Repeating the process for each root of q we obtain that the result

|x|r2 , |x|r2 log |x|, · · · , |x|r2 logm2−1 |x|; · · · ; |x|rs , |x|rs log |x|, · · · , |x|rs logms−1 |x|

form a basis for the solutions of the n-th order Euler equation for any interval not
containing x 6= 0.
Let us sum up

1. We have defined a second-order equation having a regular singular point as the
Euler equation.

2. Finally, we solved some illustrative examples.

Check your progress

1. The solution of the differential equation x2y′′ + xy′ + 4y = 0 for |x| > 0 is given
by,
(a) φ(x) = c1|x|2i + c2|x|−2i (b) φ(x) = c1|x|i + c2|x|2i
(c) φ(x) = c1|x|−i + c2|x|−2i (d) None of these.

2. The solution of differential equation x2y′′ + xy′ − 4y = −x for x > 0 is given by,
(a) φ(x) = c1x

2 + c2x
−2 (b) φ(x) = c1x

−3 + c2x
2

(c) φ(x) = c1x
−3 + c2x

−2 (d) None of these
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4.3 Second order equations with regular singular points-
an example

The second order equation with regular singular point at x0 has the form

(x− x0)2y′′ + a(x)(x− x0)y′ + b(x)y = 0 (4.20)

where a(x), b(x) are analytic at x0. Thus a, b has the power series expansions

a(x) =
∞∑
k=0

αk(x− x0)k, b(x) =
∞∑
k=0

βk(x− x0)k,

which are convergent on some interval |x− x0| < r0, for some r0 > 0.
Let t = x− x0. Then x = x0 + t, and

ã(t) = a(x0 + t) =
∞∑
k=0

αk(x0 + t− x0)k

=
∞∑
k=0

αk(t)
k

and

b̃(t) = b(x0 + t) =
∞∑
k=0

βk(x0 + t− x0)k

=
∞∑
k=0

βk(t)
k.

The power series for ã, b̃ converge on the interval |t| < r0 about t = 0. Let φ be any
solution of 4.20, and define φ̃ by

φ̃(t) = φ̃(x0 + t).

Then

dφ̃

dt
(t) =

dφ

dx
(x0 + t),

d2φ̃

dt2
(t) =

d2φ

dx2
(x0 + t),

and

(x− x0)2φ′′(x) + a(x)(x− x0)φ′ + b(x)φ(x) = 0

t2
d2φ̃

dt2
(t) + tã(t)

dφ̃

dt
(t) + b̃(t)φ̃(t) = 0.

Thus φ satisfies

t2u′′ + ã(t)tu′ + b̃(t)u = 0, (4.21)
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where now u′ = du/dt. This is an equation with a regular singular point at t = 0.
Conversely, if φ̃ satisfies 4.21 the function φ given by φ(x) = φ̃(x−x0) satisfies 4.20.

In this sense 4.21 is equivalent to 4.20.
With x0 = 0 in 4.20 we may write 4.20 as

L(y) = x2y′′ + a(x)xy′ + b(x)y = 0, (4.22)

where a, b are analytic at the origin, and have power series expansions

a(x) =
∞∑
k=0

αkx
k, b(x) =

∞∑
k=0

βkx
k, (4.23)

which are convergent on an interval |x| < r0, r0 > 0. The Euler equation is the special
case of 4.22 with the constants a, b.

Example 4.3 Find the solutions of the equation

L(y) = x2y′′ +
3

2
xy′ + xy = 0, (4.24)

which has a regular singular point at the origin.

Solution:
Let us restrict our attention to x > 0. Since it is not an Euler equation, we can not
expect it to have a solution of the form xr there. However we try for a solution

φ(x) = xr
∞∑
k=0

ckx
k = xr(c0 + c1x+ +c1x

2 + · · · , )

= c0x
r + c1x

r+1 + c2x
r+2 + · · · , (c0 6= 0), (4.25)

that is, xr times a power series. We operate formally and see what conditions must be
satisfied by r and c0, c1, c2, · · · in order that this φ be a solution of 4.24. Computing we
find that

φ′(x) = c0rx
r−1 + c1(r + 1)xr + c2(r + 2)xr+1 + · · · ,

φ′′(x) = c0r(r − 1)xr−2 + c1(r + 1)rxr−1 + c2(r + 2)(r + 1)xr + · · · ,

and hence

x2φ′′(x) = c0r(r − 1)xr + c1(r + 1)rxr+1 + c2(r + 2)(r + 1)xr+2 + · · · ,
3

2
xφ′(x) =

3

2
c0rx

r +
3

2
c1(r + 1)xr+1 +

3

2
c2(r + 2)xr+2 + · · · ,

xφ(x) = c0x
r+1 + c1x

r+2 + c2x
r+3 + · · · .

Adding the above equations, we obtain

(i.e) L(φ)(x) = x2φ′′(x) + xφ′(x) + xφ(x),

L(φ)(x) =

[
r(r − 1) +

3

2
r

]
c0x

r +

{[
(r + 1)r +

3

2
(r + 1)

]
c1 + c0

}
xr+1
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+

{[
(r + 2)(r + 1) +

3

2
(r + 2)

]
c2 + c1

}
xr+2 + · · · .

If we let

q(r) = r(r − 1) +
3

2
r = r

(
r +

1

2

)
,

this can be written as

L(φ)(x) = q(r)c0x
r + [q(r + 1)c1 + c0]xr+1 + [q(r + 2)c2 + c1]xr+2 + · · ·

= q(r)c0x
r + xr

∞∑
k=1

[q(r + k)ck + ck−1]xk.

If φ is to satisfy L(φ)(x) = 0 all coefficients of the powers of x must vanish. Since we
assumed c0 6= 0 this implies

q(r) = 0,

q(r + k)ck + ck−1 = 0, (k = 1, 2, · · · ). (4.26)

The polynomial q is called the indicial polynomial for 4.24. It is the coefficient of the
lowest power of x appearing in L(φ)(x), and from 4.26 we see that its roots are the
only permissible values of r for which there are solutions of the form 4.25. In our
example these roots are

r1 = 0, r2 = −1

2
.

The second set of equations in 4.26 delimits c1, c2, · · · in terms of c0 and r. If q(r+k) 6=
0 for k = 1, 2, · · · , then

q(r + k)ck + ck−1 = 0

q(r + k)ck = −ck−1

ck = − ck−1

q(r + k)
, (k = 1, 2, · · · , ).

Substituting the k values in the above equation, we obtain

c1 = (−1)
c0

q(r + 1)

c2 =
(−1)c1

q(r + 2)
=

(−1)

q(r + 2)

(−1)c0

q(r + 1)

=
(−1)2c0

q(r + 2)q(r + 1)

and

ck =
(−1)kc0

q(r + k)q(r + k − 1) · · · q(r + 1)
, (k = 1, 2, · · · ).

If r1 = 0,

q(r1 + k) = q(k) 6= 0 for k = 1, 2, · · · ,
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since the other root of q is r2 = −1
2
. Similarly if r2 = −1

2
,

q(r2 + k) = q

(
−1

2
+ k

)
6= 0 for k = 1, 2, · · · .

Letting c0 = 1 and r = r1 = 0 we obtain, at least formally, a solution φ1 given by

φ(x) = c0x
0 + c1x+ c2x

2 + · · ·

φ(x) = c0 +
∞∑
k=1

ckx
k

φ1(x) = c0 +
∞∑
k=1

(−1)kc0x
k

q(k)q(k − 1) · · · q(1)
,

= 1 +
∞∑
k=1

(−1)kxk

q(k)q(k − 1) · · · q(1)
, (∵ c0 = 1),

and letting c0 = 1 and r = r2 = −1
2

we obtain another solution

ck =
(−1)kc0

q(−1
2

+ k)q(−1
2

+ k − 1) · · · q(−1
2

+ 1)

=
(−1)kxk

q(k − 1
2
)q(k − 3

2
) · · · q(1

2
)

φ2(x) = c0x
− 1

2 + c1x
− 1

2
+1 + c2x

− 1
2

+2 + · · ·

= c0x
− 1

2 +
∞∑
k=1

ckx
− 1

2
+k

= c0x
− 1

2 +
∞∑
k=1

(−1)kc0x
− 1

2
+k

q(k − 1
2
)q(k − 3

2
) · · · q(1

2
)

φ2(x) = x−
1
2 + x−

1
2

∞∑
k=1

(−1)kxk

q(k − 1
2
)q(k − 3

2
) · · · q(1

2
)
, (∵ c0 = 1).

These functions φ1, φ2 will be solutions provided the series converge on some interval
containing x = 0. Let us write the series for φ1 in the form

φ1(x) =
∞∑
k=0

dk(x).

Using the ratio test we obtain

dk+1(x)

dk(x)
=

(−1)k+1xk+1

q(k + 1)q(k) · · · q(1)

(−1)kxk

q(k)q(k − 1) · · · q(1)
=

(−1)(x)

q(k + 1)∣∣∣∣dk+1(x)

dk(x)

∣∣∣∣ =
|x|

|q(k + 1)|
=

|x|
(k + 1)(k + 3

2
)
→ 0
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as k →∞, provided |x| <∞. Thus the series defining φ1 is convergent for all finite x.
The same can be shown to hold for the series multiplying x−

1
2 in the expression for φ2.

Thus φ1, φ2 are solutions of 4.24 for all x > 0.
To obtain solutions for x < 0 we note that all the above computations go through

if xr is replaced everywhere by |x|r, where

|x|r = er log |x|. (4.27)

Thus two solutions of 4.24 which are valid for all x 6= 0 are given by

φ1(x) = 1 +
∞∑
k=1

(−1)kxk

q(k)q(k − 1) · · · q(1)
,

and

φ2(x) = |x|−
1
2

[
1 +

∞∑
k=1

(−1)kxk

q(k − 1
2
)q(k − 3

2
) · · · q(1

2
)

]
.

Note:

1. The definition 4.27 implies that |x| 12 is the positive square root of |x|.

2. The above example illustrate the general fact that an equation 4.22 with regular
singular point at the origin always has a solution φ of the form

φ(x) = |x|r
∞∑
k=0

ckx
k, (4.28)

where r is a constant, and the series converges on the interval |x| < r0. More-
over r, and the constants ck, may be computed by substituting 4.28 into the
differential equation.

4.3.1 Second order equation with regular singular points - the
general case

Theorem 4.3 Consider the equation

x2y′′ + a(x)xy′ + b(x)y = 0,

where a, b have convergent power series expansions for

|x| < r0, r0 > 0.

Let r1, r2(Re r1 ≥ Re r2) be the roots of the indicial polynomial

q(r) = r(r − 1) + a(0)r + b(0).

For 0 < |x| < r0 there is a solution φ1 of the form

φ1(x) = |x|r1
∞∑
k=0

ckx
k, (c0 = 1),

99



where the series converges for |x| < r0. If r1 − r2 is not zero or a positive integer, there is
a second solution φ2 for 0 < |x| < r0 of the form

φ2(x) = |x|r2
∞∑
k=0

c̃kx
k, (c̃0 = 1),

where the series converges for |x| < r0.
The coefficients ck, c̃k can be obtained by substitution of the solutions into the differ-

ential equation.

Proof:
Suppose we have a solution φ of the form

φ(x) = xr
∞∑
k=0

ckx
k

=
∞∑
k=0

ckx
(k+r), (c0 6= 0) (4.29)

for the equation

x2y′′ + a(x)xy′ + b(x)y = 0, (4.30)

where

a(x) =
∞∑
k=0

αkx
k, b(x) =

∞∑
k=0

βkx
k, (4.31)

for |x| < r0. Then

φ′(x) =
∞∑
k=0

ck(k + r)xk+r−1

= xr−1

∞∑
k=0

ck(k + r)xk,

φ′′(x) =
∞∑
k=0

ck(k + r)(k + r − 1)xk+r−2

= xr−2

∞∑
k=0

ck(k + r)(k + r − 1)xk,

and hence

b(x)φ(x) =

(
∞∑
k=0

βkx
k

)(
xr

∞∑
k=0

ckx
k

)

= xr
∞∑
k=0

β̃k(x)k,
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where β̃k =
k∑
j=0

cjβk−j,

xa(x)φ′(x) = x

(
∞∑
k=0

αk(x)k

)(
xr−1

∞∑
k=0

ck(k + r)xk

)

= xr

(
∞∑
k=0

αk(x)k

)(
∞∑
k=0

ck(k + r)xk

)

= xr
∞∑
k=0

α̃k(x)k

where α̃k =
k∑
j=0

(j + r)cjαk−j,

x2φ′′(x) = x2

[
xr−2

∞∑
k=0

ck(k + r)(k + r − 1)xk

]

= xr

[
∞∑
k=0

ck(k + r)(k + r − 1)xk

]
.

Thus

L(φ)(x) = x2φ′′ + a(x)xφ′ + b(x)φ

= xr

[
∞∑
k=0

ck(k + r)(k + r − 1)xk

]
+ xr

∞∑
k=0

α̃k(x)k + xr
∞∑
k=0

β̃kx
k

= xr
∞∑
k=0

[
(k + r)(k + r − 1)ck + α̃k + β̃k

]
xk,

and we must have

[ ]k =
[
(k + r)(k + r − 1)ck + α̃k + β̃k

]
= 0, (k = 0, 1, 2, · · · ).

Using the definitions of α̃k, β̃k we can write the bracket [ ]k as

[ ]k = (k + r)(k + r − 1)ck +
k∑
j=0

cj(j + r)αk−j +
k∑
j=0

cjβk−j

= (k + r)(k + r − 1)ck + ck(k + r)α0 + ckβ0 +
k−1∑
j=0

[(j + r)αk−j + βk−j] cj

= (k + r)(k + r − 1)ck + α̃k + β̃k

= (k + r)(k + r − 1)ck +
k∑
j=0

cj +
k∑
j=0

cj(j + r)αk−j +
k∑
j=0

cjβk−j

= (k + r)(k + r − 1)ck + ck(k + r)α0 + ckβ0 +
k−1∑
j=0

[(j + r)αk−j + βk−j] cj.
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For k = 0 we must have

r(r − 1) + rα0 + β0 = 0, (4.32)

since c0 6= 0. The second degree polynomial q given by

q(r) = r(r − 1) + rα0 + β0

is called the indicial polynomial for 4.30, and the only admissible values of r are the
roots of q. We see that

[ ]k = q(r + k)ck + dk = 0, (k = 1, 2, · · · ), (4.33)

where

dk =
k−1∑
j=0

[(j + r)αk−j + βk−j] cj, (k = 1, 2, · · · ). (4.34)

Note that dk is a linear combination of c0, c1, · · · , ck−1 with coefficients involving the
known functions a, b and r. Leaving r and c0 indeterminate for the moment we solve
the equations 4.33, 4.34 successively in terms of c0 and r. The solutions we denote by
Ck(r), and the corresponding dk by Dk(r). Put k = 1 in the equation 4.34, we get

D1(r) = d1 =
0∑
j=0

[(j + r)α1−j + β1−j] cj

= (0 + r)α1−0 + β1−0c0

D1(r) = (rα1 + β1)c0, (4.35)

q(r + 1)C1(r) +D1(r) = 0,

C1(r) = − D1(r)

q(r + 1)
. (4.36)

Put k = 2, we get

D2(r) = d2 =
1∑
j=0

[(j + r)α2−j + β2−j] cj (4.37)

q(r + 2)C2(r) +D2(r) = 0,

C2(r) = − D2(r)

q(r + 2)
, (4.38)

and in general

Dk(r) =
k−1∑
j=0

[(j + r)αk−j + βk−j] cj, (4.39)

Ck(r) = − Dk(r)

q(r + k)
, (k = 1, 2, · · · ). (4.40)
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The Ck thus determined are rational functions of r (quotients of polynomials), and the
only points where they cease to exist are the points r for which q(r + k) = 0 for some
k = 1, 2, · · · . Only two such possible points exist. Let us define φ by

Φ(x, r) = c0x
r + xr

∞∑
k=1

Ck(r)x
k. (4.41)

If the series in 4.41 converges for 0 < x < r0, then clearly

L(Φ)(x, r) = c0q(r)x
r. (4.42)

If the φ given by 4.29 is a solution of 4.30 then r must be a root of the indicial polyno-
mial q, and the ck(k ≥ 1) are determined uniquely in terms of r and c0 to be the Ck(r)
of 4.40, provided q(r + k) 6= 0 for k = 1, 2, · · · .

Conversely if r is a root of q, and if the Ck(r) can be determined, then the function
φ given by φ(x) = Φ(x, r) is a solution of 4.30 for any choice of c0, provided the series
in 4.41 can be shown to be convergent.

Let r1, r2 be the two roots of q, and suppose we have labeled them so that Re r1 =
Re r2. Then q(r1 + k) 6= 0 for any k = 1, 2, · · · .

Thus Ck(r1) exists for all k = 1, 2, · · · , and letting c0 = C0(r1) = 1 we see that the
function φ1 given by

φ1(x) = xr1
∞∑
k=0

Ck(r1)xk (C0(r1) = 1), (4.43)

is a solution of 4.30, provided the series is convergent.
If r2 is a root of q distinct from r1, and q(r2 + k) 6= 0 for k = 1, 2, · · · , then clearly

Ck(r2) is defined for k = 1, 2, · · · , and the function φ2 given by

φ2(x) = xr2
∞∑
k=0

Ck(r2)xk (C0(r2) = 1), (4.44)

is another solution of 4.30, provided the series is convergent. The condition

q(r2 + k) 6= 0 for k = 1, 2, · · ·

is the same as
r1 6= r2 + k for k = 1, 2, · · · ,

or r1 − r2 is not a positive integer.
As we have seen in 4.43, 4.44, the coefficients ck, c̃k appearing in the solutions

φ1, φ2 of the above theorem are given by

ck = Ck(r1), c̃k = Ck(r2) for k = 1, 2, · · · ,

where the Ck(r), (k = 1, 2, · · · ), are the solutions of the equations 4.39, 4.40, with
C0(r) = 1.

In the case of the Euler equation, that the calculations made for x > 0 remain valid
for x < 0 provided xr is replaced every where by |x|r.

If r1−r2 is either zero or a positive integer we shall say that we have an exceptional
case. The Euler equation shows that if rß = r2 we must expect solutions involving log x.
In the case when r1 − r2 is a positive integer log x may appear.
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4.3.2 The exceptional cases

Theorem 4.4 Consider the equation

x2y′′ + a(x)xy′ + b(x)y = 0,

where a and b have power series expansions which are convergent for |x| < r2, r0 > 0. Let
r1, r2 (Re r1 ≥ Re r2 be the roots of the indicial polynomial

q(r) = r(r − 1) + a(0)r + b(0).

If r1 = r2, there are two linearly independent solutions φ1, φ2 for 0 < |x| < r0 of the form

φ1(x) = |x|r1σ1(x), φ2(x) = |x|r1+1σ2(x) + (log |x|)φ1(x),

where σ1, σ2 have power series expansions which are convergent for |x| < r0 and σ1(0) 6=
0.
If r1 − r2 is a positive integer, then there are two linearly independent solutions φ1, and
φ2 for 0 < |x| < r0 of the form

φ1(x) = |x|r1σ1(x), φ2(x) = |x|r2σ2(x) + c(log |x|)φ1(x),

where σ1, σ2 have power series expansions which are convergent for

|x| < r0, σ1(0) 6= 0, σ2(0) 6= 0,

and c is a constant. It may happen that c = 0.

Proof:
We divide the exceptional cases into two groups according as the root r1, r2(Re r1 ≥
Rer1) of the indicial polynomial satisfy

(i) r1 = r2

(ii) r1 − r2 is a positive integer.

We try to find solutions for 0 < x < r0. We are going to work in a purely formal way
in order to discover the form that the solutions should take. For such x we have from
4.41, 4.42

L(Φ)(x, r) = c0q(r)x
r, (4.45)

where Φ is given by

Φ(x, r) = c0x
r + xr

∞∑
k=1

Ck(r)x
k. (4.46)

The Ck(r) are determined recursively by the formulas

C0(r) = c0 6= 0,

q(r + k)Ck(r) = −Dk(r), (4.47)
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Dk(r) =
k−1∑
j=0

[(j + r)αk−j + βk−j]Cj(r), (k = 1, 2, · · · );

see 4.39, 4.40.
In case (i) we have

q(r1) = 0, q′(r1) = 0,

and this suggest formally differentiating 4.45 with respect to r. We obtain

∂

∂r
L(Φ)(x, r) = L

(
∂Φ

∂r

)
(x, r)

= c0[q′(r) + (log x)q(r)]xr,

and we see that if r = r1 = r2, c0 = 1, then

φ2(x) =
∂Φ

∂r
(x, r1)

will yield a solution of our equation, provided the series involved converge. Computing
formally from 4.46 we find

φ2(x) = xr1
∞∑
k=0

C ′k(r1)xk + (log x)xr1
∞∑
k=0

Ck(r1)xk

= xr1
∞∑
k=0

C ′k(r1)xk + (log x)φ1(x),

where φ1 is the solution already obtained:

φ1(x) = xr1
∞∑
k=0

Ck(r1)xk, (C0(r1) = 1).

Note that C ′k(r1) exists for all (k = 0, 1, 2, · · · ), since Ck is a rational function of r whose
denominator is not zero at r = r1. Also C0(r) = 1 implies that C ′0(r1) = 0, and thus the
series multiplying xr1 in φ2 starts with the first power of x.
Let us now turn to the case (ii), and suppose that r1 = r2 + m, where m is a positive
integer. If c0 is given,

C1(r2), · · · , Cm−1(r2)

all exist as finite numbers, but since

q(r +m)Cm(r) = −Dm(r), (4.48)

we run into trouble in trying to compute Cm(r2). Now

q(r) = (r − r1)(r − r2),

and hence

q(r +m) = (r − r2)(r +m− r2).
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If Dm(r) also has r − r2 as a factor (i.e.,Dm(r2) = 0) this would cancel the same factor
in q(r +m), and 4.48 would give Cm(r2) as a finite number. Then

Cm+1(r2), Cm+2(r2), · · ·

all exist. In this rather special situation we will have a solution φ2 of the form

φ2(x) = xr2
∞∑
k=0

Ck(r2)xk, (C0(r2) = 1).

We can always arrange it so that Dm(r2) = 0 by choosing

C0(r) = r − r2

From 4.47, we see that Dk(r) is linear homogeneous in

C0(r), · · · , Ck−1(r),

and hence Dk(r) has c0(r) = r−r2 as a factor. Thus Cm(r2) will exist as a finite number.
Letting

Ψ(x, r) = xr
∞∑
k=0

Ck(r)x
k, (C0(r) = r − r2), (4.49)

we find formally that

L(Ψ)(x, r) = (r − r2)q(r)xr. (4.50)

Putting r = r2 we obtain formally a solution ψ given by

ψ(x) = Ψ(x, r2).

However C0(r2) = C1(r2) = · · · = Cm−1(r2) = 0. Thus the series for ψ actually starts
with the m-th power of x, and hence ψ has the form

ψ(x) = xr2+mσ(x) = xr1σ(x),

where σ is some power series. It is not difficult to see that ψ is just a constant multiple
of the solution φ1 already obtained.

To get a solution really associated with r2 we differentiate 4.47 with respect to r,
obtaining

∂

∂r
L(Ψ)(x, r) = L

(
∂Ψ

∂r

)
(x, r)

= q(r)xr + (r − r2) [q′(r) + (log x)q(r)]xr.

Now letting r = r2 we find that the φ2 given by

φ2(x) =
∂Ψ

∂r
(x, r2)
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is a solution, provided the series involved are convergent. It has the form

φ2(x) = xr2
∞∑
k=0

C ′k(r2)xk + (log x)xr2
∞∑
k=0

Ck(r2)xk,

where C0(r) = r − r2. Since

C0(r2) = · · · = Cm−1(r2) = 0,

we may write this as

φ2(x) = xr2
∞∑
k=0

C ′k(r2)xk + c(log x)φ1(x),

where c = Cm(r2).
The method used in this section to obtain solutions is called the Frobenius method.
All the series obtained converge for |x| < r0, and the φ2 computed formally will be a
solution in both the cases (i) and (ii). This requires justifying the differentiating of the
various series term by term with respect to r, and this can be done.

Solutions for x < 0 can be obtained by replacing

xr1 , xr2 , log x

everywhere by

|x|r1 , |x|r2 , log |x|

respectively.

Let us sum up

1. We have defined the significance of the Frobenius method.

2. We have discussed the method of finding exceptional regular singular points
using Frobenius method.

3. We have discussed the linear homogeneous equation with a regular singular
point at the origin always having a solution.

4. We have discussed the general case for a second-order equation with regular
singular points.

5. Finally, we figure out some illustrative examples.

Check your progress

3. For the differential equation x2y′′ − 5y′ + 3x2y = 0,
(a) x = 1, regular singular point (b) x = 0, not regular singular point
(c) x = 1, not regular singular point (d) x = 0, regular singular point

4. For the differential equation x2y′′+(sinx)y′+(cosx)y = 0, which of the following
statement is true?
(a) x = 0, regular (b) x = 1, regular
(c) x = 0, irregular (d) x = 1, irregular
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4.4 The Bessel equation

In this section, you will learn about the standard forms and notations of the Bessel’s
equation and functions. The Bessel differential equation is the linear second order
ordinary differential equation. The solutions to the Bessel differential equation define
the Bessel’s functions Jn(x) and Yn(x) which has a regular singularity at 0 (zero) and
an irregular singularity at∞.

If α is a constant, Re α = 0, the Bessel equation of order α is the equation

L(y) = x2y′′ + xy′ + (x2 − α2)y = 0. (4.51)

This has the form

x2y′′ + a(x)y′ + b(x)y = 0, (4.52)

with a(x) = x, b(x) = x2 − α2. Since a, b are analytic at x = 0, the Bessel equation has
the origin as a regular singular point. The indicial polynomial q is given by

q(r) = r(r − 1) + r − α2 = r2 − α2,

whose 2 roots r1, r2 are
r1 = α, r2 = −α.

4.4.1 First kind of Bessel equation of order zero:

Let us consider the case α = 0. Since the roots are both equal to zero in this case there
are two solutions φ1, φ2 of the form

φ1(x) = σ1(x),

φ2(x) = xσ2(x) + (log x)φ1(x),

where σ1, σ2 have power series expansion, which converge for all finite x. Let us
compute σ1, σ2. Let

L(y) = x2y′′ + xy′ + x2y,

and suppose

σ1(x) =
∞∑
k=0

ckx
k, (c0 6= 0).

We find

σ′1(x) = φ′1(x) =
∞∑
k=1

ckkx
k−1,

σ′′1(x) = φ′′1(x) =
∞∑
k=2

ckk(k − 1)xk−2,

xσ′1(x) =
∞∑
k=1

ckkx
k = c1x+

∞∑
k=2

ckkx
k,
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x2σ′′1(x) =
∞∑
k=2

ckk(k − 1)xk,

x2σ1(x) =
∞∑
k=0

ckx
k+2 =

∞∑
k=2

ck−2x
k.

We obtain

φ′1(x) =
∞∑
k=1

kckx
k−1 +

φ1(x)

x
+ (log x)φ′1(x),

φ′′2(x) =
∞∑
k=2

k(k − 1)ckx
k−2 − φ1(x)

x2
+

2

x
φ′1(x) + (log x)φ′′1(x).

Thus

L(σ1)(x) = c1(x) +
∞∑
k=2

{[k(k − 1) + k]ck + ck−2}xk = 0.

We see that

c1 = 0

[k(k − 1) + k]ck + ck−2 = 0, (k = 2, 3, · · · ).

The second set of equations is the same as

ck = −ck−2

k2
, (k = 2, 3, · · · ).

The choice c0 = 1 implies

c2 = − 1

22
, c4 = − c2

42
=

1

22 · 42
, · · · ,

and in general

c2m =
(−1)m

22 · 42 · · · (2m)2
=

(−1)m

22m(m!)2
, (m = 1, 2, · · · ).

Since c1 = 0 we have
c3 = c5 = · · · = 0.

Thus σ1 contains only even powers of x, and we obtain

σ1(x) =
∞∑
m=0

(−1)mx2m

22m(m!)2
,

where as usual 0! = 1, and 20 = 1. The function defined by this series is called the
Bessel function of zero order of the first kind and is denoted by J0. Thus

J0(x) =
∞∑
m=0

(−1)m

(m!)2

(x
2

)2m

.

It is easily checked by the ratio test that this series indeed converges for all finite x.
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4.4.2 Second kind of Bessel equation of order zero:

We now determine a second solution φ2 for the Bessel equation of order zero. Letting
φ1 = J0 this solution has the form,

φ2(x) =
∞∑
k=0

ckx
k + (log x)φ1(x), (c0 = 0).

We obtain

φ′2(x) =
∞∑
k=1

ckkx
k−1 +

1

x
φ1(x) + φ′1(x)(log x),

φ′′2(x) =
∞∑
k=2

ckk(k − 1)xk−2 − φ1(x)

(
−1

x2

)
+

2

x
φ′1(x) + φ′′1(x)(log x).

Thus

L(φ2)(x) = x2φ′′2(x) + xφ′2(x) + x2φ2(x)

= c1x+ 22c2x
2 +

∞∑
k=3

(
k2ck + ck−2

)
xk + 2xφ′1(x) + (log x)L(φ1)(x),

and since L(φ1)(x) = 0, we have

c1x+ 22c2x
2 +

∞∑
k=3

(
k2ck + ck−2

)
xk = −2xφ′1(x)

= −2x
∞∑
m=1

(−1)m2mx2m−1

22m(m!)2

= −2
∞∑
m=1

(−1)m2mx2m

22m(m!)2
.

Hence equating the coefficients of x and x2, we get c1 = 0,

m = 1⇒ 22c2 =
−2(−1)2

22(1!)2
=

4

4
= 1

m = 2⇒ 32c3 + c1 = 0

32c3 + 0 = 0

32c3 = 0

⇒ c3 = 0,

and we see that since the series on the right has only even powers of x,

c1 = c5 = c7 = · · · = 0.

The recursion relation for the other coefficient is

(2m)2c2m + c2m−2 =
(−1)m+1m

22m−2(m!)2
, (m = 2, 3, · · · ).
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We have

m = 1⇒ 22c2 + c0 =
(−1)2

20(1!)2

22c2 + 0 =
1

1

c2 =
1

22
.

m = 2⇒ 2222c4 + c2 = −(1)3 · 2
22(2!)2

42c4 +
1

22
= − (1)

2 · 22

42c4 =
1

22
− (1)

2 · 22

c4 =
1

42

1

22
− (1)

2 · 22

c4 = − 1

42 · 22

[
1 +

1

2

]
and

c6 =
1

62

[
1

42 · 22

(
1 +

1

2

)
+

1

42 · 22

(
1 +

1

3

)]
=

1

22 · 42 · 62

[
1 +

1

2
+

1

3

]
=

1

22(12 · 22 · 32)

[
1 +

1

2
+

1

3

]
.

It can be shown by induction that

c2m =
(−1)m−1

22m(m!)2

[
1 +

1

2
+

1

3
+ · · ·+ 1

m

]
, (m = 1, 2, · · · ).

Then

φ2(x) =
∞∑
k=0

ckx
k + (log x)φ1(x),

φ2(x) =
∞∑
m=0

c2mx
2m + (log x)φ1(x),

φ2(x) =
∞∑
m=1

(−1)m−1

(m!)2

(
1 +

1

2
+

1

3
+ · · ·+ 1

m

)(x
2

)2m

+ (log x)φ1(x).

The solution thus determined is called a Bessel function of zero order of the second
kind, and is denoted by K0. Hence

K0(x) = −
∞∑
m=1

(−1)m

(m!)2

(
1 +

1

2
+

1

3
+ · · ·+ 1

m

)(x
2

)2m

+ (log x)J0(x).
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4.4.3 Bessel function of order α:

Now we compute solutions for the Bessel equation of order α, where α 6= 0, and
Re α ≥ 0:

L(y) = x2y′′ + xy′ + (x2 − α2)y = 0. (4.53)

This is of the form

x2y′′ + a(x)y′ + b(x)y = 0. (4.54)

As before we restrict attention to the case x > 0. The indicial polynomial is given by

q(r) = r(r − 1) + r + α2 = 0

r2 − r + r − α2 = 0

r = ±α.

The roots of the indicial polynomial equation are

r1 = α, r2 = −α.

First we determine a solution corresponding to the root r1 = α. The solution φ1 has
the form

φ1(x) = xr1
∞∑
k=0

ckx
k,

= xα
∞∑
k=0

ckx
k,

φ1(x) =
∞∑
k=0

ckx
k+α, (c0 6= 0).

Let y = φ1(x). Then

L(φ1)(x) = x2φ′′1(x) + xφ′1(x) + (x2 − α2)φ1(x) = 0,

and

φ1(x) =
∞∑
k=0

ckx
k+α

= c0x
α + c1x

α+1 +
∞∑
k=2

ckx
k+α

φ′1(x) =
∞∑
k=0

ck(k + α)xk+α−1

= c0(α)xα−1 + c1(1 + α)xα +
∞∑
k=2

ck(k + α)xk+α−1
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xφ′1(x) = c0(α)xα + c1(1 + α)xα+1 +
∞∑
k=2

ck(k + α)xk+α

φ′′1(x) =
∞∑
k=0

ck(k + α)(k + α− 1)xk+α−2

= c0(α)(α− 1)xα−2 + c1(α + 1)(α)xα−1 +
∞∑
k=2

ck(k + α)(k + α− 1)xk+α−2

x2φ′′1(x) = c0(α)(α− 1)xα + c1(α + 1)(α)xα+1 +
∞∑
k=2

ck(k + α)(k + α− 1)xk+α

(x2 − α2)φ1(x) = x2

[
∞∑
k=2

ck−2x
k+α

]
− α2

[
c0x

α + c1x
α+1 +

∞∑
k=2

ckx
k+α

]

=
∞∑
k=2

ck−2x
k+α+2 − α2c0x

α − α2c1x
α+1 − α2

∞∑
k=2

ckx
k+α.

We find that

L(φ1)(x) = 0 · c0x
α +

[
(α + 1)2 − α2

]
c1x

α+1 + xα
∞∑
k=2

{
[
(α + k)2 − α2)

]
ck + ck−2}xk = 0.

Thus we have

c1x
α+1 [2α + 1] = 0

⇒ c1 = 0. (4.55)

ck
[
k2 + 2kα + ck−2

]
= 0

ck
[
k2 + 2kα

]
= −ck−2

ck = − ck−2

k2 + 2kα
, (k = 2, 3, · · · ). (4.56)

We find

k = 2, c2 = − c0

22 + 22α
= − c0

22(1 + α)
,

k = 3, c3 = − c1

32 + 3(2)α
= 0,

k = 4, c4 = − c2

42 + 2(4)α

=
c0

8(2 + α).22(1 + α)

=
c0

24.(2!)(α + 2)(α + 1)
,

k = 5, c5 = − c1

52 + 5(2)α
= 0,

k = 6, c6 = − c4

62 + 2(6)α
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= − c0

6(6 + 2α).24.(2!)(α + 2)(α + 1)
,

= − c0

6(2).24.(2!)(α + 3)(α + 2)(α + 1)
,

= − c0

26.3!(α + 3)(α + 2)(α + 1)
.

This implies that

c1 = c3 = c5 = · · · = 0.

In general,

c2m =
(−1)mc0

22m(m!)(α + 1)(α + 2)(α + 3) · · · (α +m)
.

Our solution thus becomes

φ1(x) = c0x
α + c0x

α

∞∑
m=1

(−1)mx2m

22m(m!)(α + 1)(α + 2)(α + 3) · · · (α +m)
. (4.57)

For α = 0, c0 = 1, this reduces to J0(x). It is usual to choose

c0 =
1

2αΓ(α + 1)
, (4.58)

where Γ is the gamma function defined by

Γ(z) =

∫ ∞
0

e−xxz−1dx, (Re z > 0).

It is readily seen that

Γ(z + 1) = zΓ(z). (4.59)

Indeed, integrating by parts, we have:

Γ(z + 1) = lim
T→∞

∫ T

0

e−xxz dx

= lim
T→∞

[
−xze−x

∣∣∣∣T
0

+ z

∫ T

0

e−xxz−1 dx

]

= z lim
T→∞

∫ T

0

e−xxz−1 dx

= zΓ(z),

since T ze−T → 0 as T →∞. Also, since

Γ(1) =

∫ ∞
0

e−x dx = 1,
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if z is a positive integer n,

Γ(n+ 1) = n!.

Thus the gamma function is an extension of the factorial function to numbers which
are not integers.

The relation 4.59 can be used to define Γ(z) for z such that Re z < 0, provided z is
not a negative integer. To see this suppose N is the positive integer such that

−N < Re z ≤ −N + 1.

Then Re (z +N) > 0, and we can define Γ(z) in terms of Γ(z +N) by

Γ(z) =
Γ(z +N)

z(z + 1) · · · (z +N − 1)
, (Re z < 0),

provided z 6= −N + 1. The gamma function is not defined at 0,−1,−2, · · · .
Returning to 4.57, if we use the c0 given by 4.58 we obtain a solution of the Bessel

equation of order α which is denoted by Jα, and is called the Bessel function of order
α of the first kind:

Jα(x) =
(x

2

)α ∞∑
m=0

(−1)m

(m!)Γ(α +m+ 1)

(x
2

)2m

, (Re α ≥ 0). (4.60)

Notice that this formula for Jα reduces to J0 when α = 0, since Γ(m+ 1) = m!.
There are now two cases according as r1− r2 = α− (−α) = 2α is a positive integer

or not. If 2α is not a positive integer, there is another solution φ2 of the form

φ2(x) = x−α
∞∑
k=0

ckx
k.

We find that our calculations for the root r1 = α carry over provided only that we
replace α by −α everywhere. Thus

J−α(x) =
(x

2

)−α ∞∑
m=0

(−1)m

(m!)Γ(m− α + 1)

(x
2

)2m

gives a second solution in case 2α is not a positive integer.
Since Γ(m − α + 1) exists for m = 0, 1, 2 provided α is not a positive integer, we

see that J−α exists in this case, even if r1 − r2 = 2α is a positive integer. Thus, if α is
not zero or a positive integer, Jα and J−α form a basis for the solutions of the Bessel
equation of order α for x > 0.

The only remaining case is that for which α is a positive integer, say α = n. There
is a solution φ2 of the form

φ2(x) = x−n
∞∑
k=0

ckx
k + c(log x)Jn(x).

Now, we find that

L(φ2)(x) = x2φ′′2(x) + xφ′2(x) + (x2 − n2)φ2(x) = 0.
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First we determine a solution corresponding to the root α = n. From the solution
φ2 has the form

φ2(x) = x−α
∞∑
k=0

ckx
k,

= x−n
∞∑
k=0

ckx
k,

φ2(x) =
∞∑
k=0

ckx
k−n, (c0 6= 0).

Then

φ2(x) =
∞∑
k=0

ckx
k−n

= c0x
−n + c1x

1−n +
∞∑
k=2

ckx
k−n

φ′2(x) =
∞∑
k=0

ck(k − n)xk−n−1

= c0(−n)x−n−1 + c1(1− n)x−n +
∞∑
k=2

ck(k − n)xk−n−1

xφ′2(x) = c0(−n)x−n + c1(1− n)x1−n +
∞∑
k=2

ck(k − n)xk−n

φ′′2(x) =
∞∑
k=0

ck(k − n)(k − n− 1)xk−n−2

= c0(−n)(−n− 1)x−n−2 + c1(1− n)(−n)x−n−1 +
∞∑
k=2

ck(k − n)

(k − n− 1)xk−n−2

x2φ′′2(x) = c0(−n)(−n− 1)x−n + c1(1− n)(−n)x1−n +
∞∑
k=2

ck(k − n)(k − n− 1)xk−n

(x2 − n2)φ2(x) = x2

[
∞∑
k=2

ck−2x
k−n

]
− n2

[
c0x
−n + c1x

1−n +
∞∑
k=2

ckx
k−n

]

=
∞∑
k=2

ck−2x
k−n+2 − n2c0x

−n − n2c1x
1−n − n2

∞∑
k=2

ckx
k−n.

Thus

L(φ2(x)) = c0(−n)(−n− 1)x−n + c1(1− n)(−n)x1−n +
∞∑
k=2

ck(k − n)(k − n− 1)xk−n
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+ c0(−n)x−n + c1(1− n)x1−n +
∞∑
k=2

ck(k − n)xk−n +
∞∑
k=2

ck−2x
k−n+2

− n2c0x
−n − n2c1x

1−n − n2

∞∑
k=2

ckx
k−n + 2cxJ ′n(x) + c(log x)L(Jn)(x) = 0,

= c0x
−n [−n(−n− 1)− n− n2

]
+ c1x

1−n [−n(1− n)− n+ 1− n2
]

+
∞∑
k=2

[
ck
[
(k − n)(k − n− 1) + k − n− n2

]
+ ck−2

]
xk−n

+ 2cxJ ′n(x) + c(log x)L(Jn)(x) = 0,

= c0x
−n [−n2 + n+ n2 − n

]
+ c1x

1−n [−n2 − n− n+ 1 + n2
]

+
∞∑
k=2

[
ck
[
k2 − kn− k − kn+ k − n− n2 + n+ n2

]
+ ck−2

]
xk−n + 2cxJ ′n(x) + c(log x)L(Jn)(x) = 0

= c0x
−n + [(1− n)2 − n2]c1x

1−n + x−n
∞∑
k=1

{[(k − n)2 − n2]ck + ck−2}xk

+ 2cxJ ′n(x) + c(log(x))L(Jn)(x) = 0,

and since L(Jn)(x) = 0, we have, on multiplying by xn,

(1− 2n)c1x+
∞∑
k=2

[k(k − 2n)ck + ck−2]xk = −2c
∞∑
m=0

(2m+ n)d2mx
2m+2n. (4.61)

Here we have put

Jn(x) =
m∑
m=0

d2mx
2m+n, (4.62)

and hence

d2m =
(−1)m

22m+nm!(m+ n)!
. (4.63)

The series on the right side of 4.61 begins with x2n, and since n is a positive integer,
we have c1 = 0. Further, if n > 1,

k(k − 2n)ck + ck−2 = 0, (k = 2, 3, . . . , 2n− 1).

Equating the coefficients of x−n, x1−n and xk−n,we get

c1x
1−n [1− 2n] = 0

⇒ c1 = 0. (4.64)

ck
[
k2 − 2kn+ ck−2

]
= 0

ck
[
k2 − 2kn

]
= −ck−2

ck = − ck−2

k2 − 2kn
(k = 2, 3, · · · ). (4.65)
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Then

k = 2, c2 = − c0

22n− 22
=

c0

22(n− 1)
,

k = 3, c3 = − c1

32 − 3(2)n
= 0,

k = 4, c4 = − c2

2(4)n− 42

=
c0

8(n− 2) · 22(n− 1)

=
c0

24 · (2!)(n− 2)(n− 1)
,

k = 5, c5 = − c1

52 − 5(2)n
= 0,

k = 6, c6 =
c4

2(6)n− 62

=
c0

6(2n− 6) · 24 · (2!)(n− 2)(n− 1)
,

=
c0

6(2) · 24 · (2!)(n− 3)(n− 2)(n− 1)
,

=
c0

26 · 3(2!)(n− 3)(n− 2)(n− 1)
.

Finally, we get

c1 = c3 = c5 = · · · = c2n−1 = 0.

In general,

c2j =
c0

22j(j!)(n− 1)(n− 2)(n− 3) · · · (n− j)
, (j = 1, 2, · · · , n− 1). (4.66)

Comparing the coefficients of x2n in 4.61 we obtain:

c2n−1 = −2cnd0 = − c

2n−1(n− 1)!
.

On the other hand from 4.66 it follows that

c2n−2 =
c0

22n−1(n− 1)!(n− 1)!
,

and therefore

c = − c0

2n−1(n− 1)!
. (4.67)

Since the series on the right side of 4.61 contains only even powers of x the same must
be true of the series on the left side of 4.61, and this implies

c2n+1 = c2n+3 = · · · = 0.
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The coefficient c2n is undetermined, but the remaining coefficients

c2n+3, c2n+1, · · ·

are obtained from the equations:

2m(2n+ 2m)c2n+2m + c2n+2m−3 = −2c(n+ 2m)d2m, (m = 1, 2, · · · ).

For m = 1 we have

c2n+2 = −cd1

2

(
1 +

1

n+ 1

)
− c2n

4(n+ 1)
.

We now choose c2n so that

c2n

4(n+ 1)
=
cd2

2

(
1 +

1

2
+ · · ·+ 1

n

)
,

since 4(n+ 1)d2 = −d0,

c2n = −cd0

2

(
1 +

1

2
+ · · ·+ 1

n

)
.

With the choice of c2n, we have

c2n+2 = −cd2

2

(
1 + 1 +

1

2
+ · · ·+ 1

n+ 1

)
.

For m = 2 we obtain

c2n+4 = −cd4

2

(
1

2
+

1

n+ 2

)
− c2n+2

22 · 2 · (n+ 2)
.

Since 22 · 2 · (n+ 2)d4 = −d2,

c2n+2

22 · 2 · (n+ 2)
=
cd4

2

(
1 + 1 +

1

2
+

1

n+ 1

)
,

and therefore

c2n+4 = −cd4

2

(
1 +

1

2
+ 1 +

1

2
+ · · ·+ 1

n+ 2

)
.

It can be shown by induction that

c2n+2m = −cd2m

2

[(
1 +

1

2
+ · · ·+ 1

m

)
+

(
1 +

1

2
+ · · ·+ 1

n+m

)]
, (m = 1, 2, · · · ).

Finally, we obtain for our solution φ2 the function given by

φ2(x) = c0x
−n + c0x

−n
n−1∑
j=1

x2j

22j(j!)(n− 1)(n− 2)(n− 3) · · · (n− j)
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− cd0

2

(
1 +

1

2
+ · · ·+ 1

n

)
xn

− c

2

∞∑
m=1

d2m

[(
1 +

1

2
+ · · ·+ 1

m

)
+

(
1 +

1

2
+ · · ·+ 1

n+m

)]
xn+2m + c(log x)Jn(x),

where c0 and c are constants related by 4.67 and d2m is given by 4.63. When c = 1 the
resulting function φ2 is often denoted by Kn. In this case

c0 = −2(n−1)(n− 1)!,

and therefore we may write

Kn(x) = −1

2

(x
2

)−n n−1∑
j=0

(n− j − 1)

j!

(x
2

)2j

− 1

2

1

n!

(
1 +

1

2
+ · · ·+ 1

n

)(x
2

)n
−

1

2

(x
2

)n ∞∑
m=1

(−1)m

m!(m+ n)!

[(
1 +

1

2
+ · · ·+ 1

m

)
+

(
1 +

1

2
+ · · ·+ 1

m+ n

)](x
2

)2m

+ (log x)Jn(x).

This formula reduces to the one for K0(x) when n = 0, provided we interpret the first
two sums on the right as zero in this case. The function Kn is called a Bessel function
of order n of the second kind.
Let us sum up

1. We have discussed the Bessel’s equation of order zero and α.

2. We have discussed the gamma function and the relation between the gamma and
exponential functions.

Check your progress

5. The value of x1/2J1/2(x) is

(a)

√
2

Γ
(

1
2

) sinx (b)

√
2

Γ
(

1
2

) cosx (c)

√
1
2

Γ (2)
sinx (d)

√
1
2

Γ (2)
cosx

6. Find out the Bessel’s Equation
(a) x2y′′ + xy′ + 1

α
(x2 − α2)y=0 (b) y′′ + xy′ + (x2 − α2)y=0

(c) x2y′′ + xy′ + (x2 − α2)y=0 (d) None of these

Summary

• A power series represents a continuous function within its interval of conver-
gence.

• A power series can be differentiated term wise within its interval of convergence.

• The theory of ordinary differential equations for the complex plane are classified
into ordinary points, at which the equation’s coefficients are analytic functions,
and singular points at which some coefficient has a singularity.
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• Any singular point which is not regular is called irregular singular point.

• The singularities of second order linear ODEs have been divided into two kinds,
regular singularities and irregular singularities.

• Frobenius Method: Solving around singular points.

• When the Frobenius series is used to solve the differential equation then the
parameter must be chosen so that when the series is substituted into the differ-
ential equation the coefficient of the smallest power of x is zero. This is called
the indicial equation.

• An indicial equation, also called a characteristic equation, is a recurrence equa-
tion obtained during application of the Frobenius method of solving a second
order ordinary differential equation.

• Bessel functions are solutions to Bessel’s differential equation, commonly arising
in problems with cylindrical or spherical symmetry in physics and engineering.

• Here, for an arbitrary complex number α, the order of the Bessel function. Al-
though α and −α produce the same differential equation for real α, it is conven-
tional to define different Bessel functions for these two values in such a way that
the Bessel functions are mostly smooth functions of α.

• The most general solution of Bessel’s equation is, y(x) = AJn(x) + BJ−n(x),
where A and B are arbitrary constants

Glossary

• Ordinary point: A point x = x0 is an ordinary point of the second-order linear
ordinary differential equation y′′ + p(x)y

′
+ q(x) = g(x), if p(x), q(x) and g(x) are

all analytic at a point x0.

• Singular point: Points that are not ordinary are called singular points of differen-
tial equation.

• Irregular singular point: Any singular point which is not regular is called irregular
singular point.

• Radius of convergence of the infinite series: The radius of convergence of the in-
finite series is the distance to the singularity of the differential equation nearest
to the singularity x = 0.

• Frobenius method: It is named after Ferdinand Georg Frobenius and is a specific
technique used to find an infinite series solution for a second order ordinary
differential equation.

• Bessel functions: These were first defined by the mathematician Daniel Bernoulli
and then generalized by Friedrich Bessel are the canonical solutions y(x) of
Bessel’s differential equation.

Self-assesment questions
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1. Find the general solution for the Euler method, x2y′′ − 3xy′ + 4y = 0
(a) φ(x) = c1lnx+ c2x

2 (b) φ(x) = xc1lnx
−2 + c2xlnx

(c) φ(x) = c1x
2 + c2x

2lnx (d) φ(x) = (c1 + c2)lnx

2. The solution of the differential equation x2y′′ − 3xy′ + 3y = 0 for x > 0 is given
by
(a) φ(x) = c1x

−1 + c2x
3 (b) φ(x) = c1x+ c2x

−3

(c) φ(x) = c1x+ c2x
3 (d) φ(x) = c1x

2 + c2x
−3

3. The indicial polynomial of the equation x2y′′ + (x2 − 3x)y′ + 3y = 0 is
(a) r2 = 0 (b) r2 − 3r + 3 = 0 (c) r2 − 4r + 3 = 0 (d) r2 − 4 = 0.

4. Find the value of the Bessel function of order α of the first kind,

(a) Jα(x) = (x
2
)−α

∞∑
m=0

(−1)m

m!Γ(m−α+1)
(x

2
)2m (b) Jα(x) = (x

2
)−α

∞∑
m=0

(−1)m

m!Γ(m+α+1)
(x

2
)2m

(c) Jα(x) = (x
2
)α

∞∑
m=0

(−1)m

m!Γ(m−α+1)
(x

2
)2m (d) Jα(x) = (x

2
)α

∞∑
m=0

(−1)m

m!Γ(m+α+1)
(x

2
)2m

5. Show that

x
1
2J 1

2
(x) =

√
2

Γ(1
2
)

sinx.

6. Show that K ′0(x) = −K1(x).

EXERCISES

1. Consider the equation

y′′ +
1

x
y′ − 1

x2
y = 0,

for x > 0.

(a) Show that there is a solution of the form xr, where r is a constant.

(b) Find two linearly independent solutions for x > 0, and prove that they are
linearly independent.

(c) Find the two solutions φ1, φ2 satisfying

φ1(1) = 1, φ2(1) = 0,

φ′1(1) = 0, φ′2(1) = 1.

2. Find two linearly independent solutions of the equation

(3x− 1)2y′′ + (9x− 3)y′ − 9y = 0

for x > 1
3
.

3. The equation y′ + a(x)y = 0 has for a solution

φ(x) = exp

[
−
∫ x

x0

a(t)dt

]
.
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(Here let a be continuous on an interval I containing x0). This suggests trying to
find a solution of

L(y) = y′′ + a1(x)y′ + a2(x)y = 0

of the form

φ(x) = exp

[ ∫ x

x0

p(t)dt

]
,

where p is a function to be determined. Show that φ is a solution of L(y) = 0 if,
and only if, p satisfies the first order non-linear equation

y′ = −y2 − a1(x)y − a2(x)

(Remark: This last equation is called a Riccati equation.)

4. Find all solutions of the following equations for x > 0:

(a) x2y′′ + 2xy′ − 6y = 0

(b) 2x2y′′ + xy′ − y = 0

(c) x2y′′ + xy′ − 4y = x

(d) x2y′′ − 5xy′ + 9y = x3

(e) x3y′′′ + 2x2y′′ − xy′ + y = 0.

5. Find all solutions of the following equations for|x| > 0:

(a) x2y′′ + xy′ + 4y = 1

(b) x2y′′ − 3xy′ + 5y = 0

(c) x2y′′ − (2 + i)xy′ + 3iy = 0

(d) x2y′′ + xy′ − 4xy = x .

6. Let φ be a solution for x > 0 of the Euler equation

x2y′′ + axy′ + by = 0,

where a, b are constants. Let ψ(t) = φ(et).

(a) Show that ψ satisfies the equation

ψ′′(t) + (a− 1)ψ(t) + bψ(t) = 0.

(b) Compute the characteristic polynomial of the equation satisfied by ψ, and
compare it with the indicial polynomial of the given Euler equation.

(c) Show that φ(x) = ψ(log x).

(d) Using (a), (b), (c), and similar facts for x < 0 prove Theorem 4.1.

7. Find the singular points of the following equations, and determine those which
are regular singular points:

(a) x2y′′ + (x+ x2)y′ − y = 0
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(b) 3x2y′′ + x6y′ + 2xy = 0

(c) x2y′′ − 5y′ + 3x2y = 0

(d) xy′′ + 4y = 0

(e) (1− x2)y′′ − 2xy′ + 2y = 0

(f) (x2 + x− 2)2y′′ + 3(x+ 2)y′ + (x− 1)y = 0

8. Compute the indicial polynomials, and their roots, for the following equations:

(a) x2y′′ + (x+ x2)y′ − y = 0

(b) x2y′′ + xy′ + (x2 − 1
4
)y = 0

9. (a) Show that −1 and 1 are regular singular points for the Legendre equation

(1− x2)y′′ − 2xy′ + α(α + 1)y = 0.

(b) Find the indicial polynomial, and its roots, corresponding to the point x = 1.

10. Find all solutions φ of the form

φ(x) = |x|r
∞∑
k=0

ckx
k, (|x| > 0),

for the following equations:

(a) 3x2y′′ + 5xy′ + 3xy = 0

(b) x2y′′ + xy′ + (x2− 1
4
)y = 0. Test each of the series involved for convergence.

11. The equation
xy′′ + (1− x)y′ + αy = 0,

where α is a constant, is called the Laguerre equation.

(a) Show that this equation has a regular singular point at x = 0.

(b) Compute the indicial polynomial and its roots.

(c) Find a solution φ of the form

φ(x) = xr
∑∞

k=0 ckx
k.

(d) Show that if α = n, a non-negative integer, there is a polynomial solution
of degree n.

12. Consider the following three equations near x = 0:

(i) 2x2y′′ + (5x+ x2)y′ + (x2 − 2)y = 0

(ii) 4x2y′′ − 4xexy′ + 3(cosx)y = 0

(iii) (1− x2)x2y′′ + 3(x+ x2)y′ + y = 0

(a) Compute the roots r1, r2 of the indicial equation for each relative to
x = 0.
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(b) Describe (do not compute) the nature of two linearly independent so-
lutions of each equation near x = 0. Using the notation of Theorem
4.4, determine the first non-zero coefficient in σ2(x) if r1 = r2, and
determine whether c = 0 in case r1 − r2, is a positive integer.

13. Consider the equation

x2y′′ + xy′ + (x2 − α2)y = 0,

where α is a non-negative constant.

(a) Compute the indicial polynomial and its two roots.

(b) Discuss the nature of the solutions near the origin. Consider all cases care-
fully. Do not compute the solutions.

14. Obtain two linearly independent solutions of the following equations which are
valid near x = 0:

(a) x2y′′ + 3xy′ + (1 + x)y = 0

(b) x2y′′ + 2x2y′ − 2y = 0

(c) x2y′′ + 5xy′ + (3− x3)y = 0

15. Consider the equation
xy′ + a(x)y = 0,

where

a(x) =
∞∑
k=0

αkx
k,

and the series converges for |x| < r0, r0 > 0.

(a) Show formally that there is a solution φ of the form

φ(x) = xr
∞∑
k=0

ckx
k, (c0 = 1),

where r + α0 = 0, and x > 0.

(b) Prove that the series obtained converges for |x| < r0.

16. Prove that the series defining J0 and K0 converge for |x| <∞.

17. Suppose φ is any solution of x2y′′+xy′+x2y = 0 for x > 0, and let ψ(x) = x
1
2φ(x),

Show that ψ satisfies the equation

x2y′′ + (x2 +
1

4
)y = 0

for x > 0.
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18. Show that J0 has an infinity of positive zeros. (Hint: If ψ0(x) = x
1
2J0(x) then ψ0

satisfies

y′′ +

[
1 +

1

4x2

]
y = 0, (x > 0)

The function χ given by χ(x) = sinx satisfies y′′+ y = 0. Apply Ex. 4 of Sec. 3.4,
Chap. 3, to show that there is a zero of J0 between any two positive zeros of χ.)

19. Show that J ′0 satisfies the Bessel equation of order one

x2y′′ + xy′ + (x2 − 1)y = 0.

20. (a) Prove that the series defining Jα and J−α converge for |x| <∞.

(b) Prove that the infinite series involved in the definition of Ka converges |x| <
∞.

21. Define 1
Γ(k)

when k is a non-positive integer, to be zero. Show that if n is a
positive integer the formula for J−n(x) gives

J−n(x) = (−1)nJn(x).

22. (a) Use the formula for Jα(x) to show that

(xαJα)′(x) = xαJα−1(x).

(b) Prove that
(x−αJα)′(x) = −xαJα+1(x).

Answer for check your progress
1. (a) 2. (d) 3. (b) 4. (b) 5. (b) 6. (c)

Suggested Reading

1. M. D. Raisinghania, Advanced Differential Equations, S.Chand and Company Ltd.
New Delhi 2001.

2. G. F. Simmons, Differential Equations with Applications and Historical Notes,
Tata McGraw Hill, New Delhi, 1974.

3. W. T. Reid, Ordinary Differential Equations, John Wiley and Sons, New York,
1971.
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Unit 5

Existence and Uniqueness of Solutions
to First Order Equations

OBJECTIVE:
After going through this unit, you will be able to identify the homogeneous differential
equations and find the solution of a given differential equation using variables separa-
ble. We understand the significance of exact differential equations and the equations
reducible to homogeneous form. Finally, we define the significance of successive ap-
proximations and the various methods of successive approximations. And also explain
how the Lipschitz condition will help to prove the existence and uniqueness theorems.

5.1 Introduction

In this unit we consider the general first order equation

y′ = f(x, y), (5.1)

where f is some continuous function. Only in rather special cases is it possible to find
explicit analytic expressions for the solutions of 5.1. We have already considered one
such special case; namely, the linear equation

y′ = g(x)y + h(x), (5.2)

where g, h are continuous on some interval I. Any solution φ of 5.2 can be written in
the form

φ(x) = eQ(x)

∫ x

x0

e−Q(t)h(t)dt+ ceQ(x), (5.3)

where

Q(x) =

∫ x

x0

g(t)dt,

where x0 ∈ I, and c is a costant. Our main goal is to prove that a wide class of
equations of the form 5.1 have solutions, and that solutions to initial value problems
are unique. If f is not a linear equation there are certian limitations which must be
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expected concerning any general existence theorem. To illustrate this consider the
equation

y′ = y2.

Here f(x, y) = y2, and we see f has derivatives of all orders with respect to x and y
at every point in the (x, y)-plane. A solution φ of this equation satisfying the initial
condition

φ(1) = −1

is given by

φ(x) = −1

x
,

as can be readily checked. However this solution ceases to exist at x = 0, even though
f is a nice function there. This example shows that any general existence theorem
for 5.1 can only assert the existence of a solution on some interval near-by the initial
point.

The above phenomenon does not occur in the case of the linear equation 5.2, for
itis clear from 5.3 that any solution φ exists on all of the interval I. This points up one
of the fundamental difficulties we encounter when we consider nonlinear equations.
The equation often gives no clue as to how far a solution will exist.

We prove that initial value problems for equation 5.1 have unique solutions which
can be obtained by an approximation process, provided f satisfies an additional con-
dition, the Lipschitz condition. We first concentrate our attention on the case when
f is real-valued, and later show how the results carry over to the situation when f is
complex-valued.

5.2 Equations with variables separated

A first order equation

y′ = f(x, y)

is said to have the variables separated if f can be written in the form

f(x, y) =
g(x)

h(y)
,

where g, h are functions of a single argument. In this case we may write our equation
as

h(y)
dy

dx
= g(x), (5.4)

or
h(y)dy = g(x)dx

and we readily see the origin of the term "variables separated". For simplicity let
us discuss the equation 5.4 in the case g and h are continuous real-valued functions
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defined for real x and y, respectively. If φ is a real-valued solution of 5.4 on some
interval I containing a point x0, then

h(φ(x))φ′(x) = g(x)

for all x ∈ I, and therefore ∫ x

x0

h(φ(t))φ′(t)dt =

∫ x

x0

g(t)dt (5.5)

for all x ∈ I. Letting u = φ(t) in the integral on the left in 5.2, we see that 5.2 may be
written as ∫ φ(x)

φ(x0)

h(u)du =

∫ x

x0

g(t)dt.

Conversely, suppose x and y are related by the formula∫ y

y0

h(u)du =

∫ x

x0

g(t)dt, (5.6)

and that this defines implicitly a differentiable function φ for x ∈ I. Then this function
satisfies ∫ φ(x)

y0

h(u)du =

∫ x

x0

g(t)dt

for all x ∈ I, and differentiating we obtain

h(φ(x))φ′(x) = g(x),

which shows that φ is a solution of 5.4 on I. In practice the usual way of dealing with
5.4 is to write it as

h(y)dy = g(x)dx

(thus separating the variables), and then integrate to obtain∫
h(y)dy =

∫
g(x)dx+ c,

where c is a constant, and the integrals are anti-derivatives. Thus

H(y) =

∫
h(y)dy, G(x) =

∫
g(x)dx,

represent any two functions H,G such that

H ′ = h, G′ = g.

Then any differentiable function φ which is defined implicitly by the relation

H(y) = G(x) + c (5.7)

will be a solution of 5.4. Therefore it is usual to identify any solution thus obtained
with the relation 5.7. We summarize in the following theorem.
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Theorem 5.1 Let g, h be continuous real-valued functions for a ≤ x ≤ b, c ≤ y ≤ d
respectively, and consider the equation

h(y)y′ = g(x). (5.8)

If G,H are any functions such that G′ = g,H ′ = h, and c is any constant such that the
relation

H(y) = G(x) + c

defines a real-valued differentiable function φ for x in some interval I contained in a ≤
x ≤ b, then φ will be a solution of 5.8 on I. Conversely, if φ is a solution of 5.8 on I, it
satisfies the relation

H(y) = G(x) + c

on I, for some constant c. The simplest example is that case in which h(y) = 1. Then
y′ = g(x), and every solution φ has the form

φ(x) = G(x) + c, (5.9)

where G is any function on a 5 x 5 b such that G′ =, g, and c is a constant. Moreover, if
c is any constant, 5.9 defines a solution of y′ = g(x). Thus we have found all solutions of
y′ = g(x) on a ≤ x ≤ b.

The function φ will be a solution of y′ = g(x)/h(y) on I, provided h(φ(x)) 0 for all x in
I. Another simple case occurs when g(x) = 1, for then we have

y′ =
1

h(y)
, (5.10)

or
h(y)dy = dx.

Thus, if H ′ = h, any differentiable function defined implicitly by the relation

H(y) = x+ c, (5.11)

where c is a constant, will be a solution of 5.10.

Example 5.1 Find the solutions of y′ = y2.

Solution: Comparing the given equation with the equation 5.10, we get h(y) =
1

y2
,

which is not continuous at y = 0. We have

dy

y2
= dx,

and thus the relation 5.11 becomes

−1

y
= x+ c, or y =

−1

x+ c
.

Thus, if c is any constant, the function φ given by

φ(x) =
−1

x+ c
(5.12)
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is a solution of y′ = y2, provided x 6= −c.
Note: It is important to remark that the separation of variables method of finding
solutions may not yield all solutions of an equation. For example, it is clear from
y′ = y2 that the function ψ which is identically zero for all x is a solution of y′ = y2.
However, for no constant c will the φ of 5.12 yield this solution.

Example 5.2 Find the solutions of y′ = 3y2/3.

Solution: The given equation can be written as

dy

y2/3
= 3dx

if y 6= 0, and hence to
y1/3 = x+ c, or y = (x+ c)3,

where c is a constant. Thus the function φ given by

φ(x) = (x+ c)3 (5.13)

will be a solution of y′ = 3y2/3 for any constant c.
Note:

1. The identically zero function is a solution of y′ = 3y2/3 which can not be obtained
from 5.13.

2. The two functions φ and ψ given by

φ(x) = x3, ψ(x) = 0, (−∞ < x <∞),

are solutions of y′ = 3y2/3 which pass through the origin. Actually there are
infinitely many functions which are solutions of y′ = 3y2/3 passing through the
origin. To see this let k be any positive number, and define φk by

φk(x) = 0, (−∞ < x ≤ k),

φk(x) = (x− k)2, (k < x <∞).

Then φk is a solution of y′ = 3y2/3 for all real x, and clearly φk(0) = 0. This
implies that nonlinear equations may have several solutions satisfying a given
initial condition.

Let us sum up

1. We have discussed the concept of variable separable method.

2. We have provided the important remark to the separation of variables method
with an example.

3. Finally, we rectified some illustrative examples.
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Check your progress

1. A function f defined for real x, y is said to be homogeneous of degree k if f(tx, ty)
is equal to
(a) tkf(x, y) (b) t−kf(x, y) (c) t2kf(x, y) (d) t1/kf(x, y)

2. Consider the differential equation x2dy+ y(x+ y)dx = 0. Which of the following
statements is true.
(a) The differential equation is linear (b) Variables separable form
(c) The differential equation is exact (d) None of these

5.3 Exact equations

Suppose the first order equation y′ = f(x, y) is written in the form

y′ =
−M(x, y)

N(x, y)
,

or equivalently
M(x, y) +N(x, y)y′ = 0, (5.14)

where M,N are real-valued functions defined for real x, y on some rectangle R. The
equation 5.14 is said to be exact in R if there exists a function F having continuous
first partial derivatives there such that

∂F

∂x
= M,

∂F

∂y
= N, (5.15)

in R. If 5.14 is exact in R, and F is a function satisfying 5.15, then 5.14 becomes

∂F

∂x
(x, y) +

∂F

∂y
(x, y)y′ = 0.

If φ is any solution on some interval I, then

∂F

∂x
(x, φ(x)) +

∂F

∂y
(x, φ(x))φ′(x) = 0, (5.16)

for all x ∈ I. If Φ(x) = F (x, φ(x)), then equation 5.16 just says that Φ′(x) = 0, and
hence

F (x, φ(x)) = c,

where c is some constant. Thus the solution φ must be a function which is given
implicitly by the relation

F (x, y) = c. (5.17)

Looking at this argument in reverse we see that if φ is a differentiable function on
some interval I defined implicitly by the relation 5.17 then

F (x, φ(x)) = c,

for all x ∈ I, and a differentiation yields 5.16. Thus φ is a solution of 5.14.
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Theorem 5.2 Suppose the equation

M(x, y) +N(x, y)y′ = 0 (5.18)

is exact in a rectangle R, and F is a real-valued function such that

∂F

∂x
= M,

∂F

∂y
= N (5.19)

in R. Every differentiable function φ defined implicitly by a relation

F (x, y) = c, (c = constant )

is a solution of 5.14, and every solution of 5.14 whose graph lies in R arises this way.

The problem of solving an exact equation is now reduced to the problem of determin-
ing a function F satisfying 5.15. If 5.14 is exact and we write it as

M(x, y)dx+N(x, y)dy =
∂F

∂x
(x, y)dx+

∂F

∂y
(x, y)dy = 0

we recognize that the left side of this equation is the differential dF of F . This is the
explanation of the term "exact"; the left side is an exact differential of a function F .
Sometimes an F can be determined by inspection. For example, if the equation

y′ = −x
y

(5.20)

is written in the form
xdx+ ydy = 0

it is clear that the left side is the differential of (x2 + y2) /2. Thus any differentiable
function which is defined by the relation

x2 + y2 = c, (c = constant )

is a solution of 5.20. Note that the equation 5.20 does not make sense when y = 0.
The above example is also a special case of an equation with variables separated.
Indeed any such equation is a special case of an exact equation, for if we write the
equation as

g(x)dx = h(y)dy

it is clear that an F is given by

F (x, y) = G(x)−H(y),

where G′ = g,H ′ = h. How do we recognize when an equation is exact? To see how,
suppose

M(x, y)dx+N(x, y)dy = 0

is exact, and F is a function which has continuous second derivatives such that

∂F

∂x
= M,

∂F

∂y
= N.
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Then
∂2F

∂y∂x
=
∂M

∂y
,

∂2F

∂x∂y
=
∂N

∂x

and, since for such a function
∂2F

∂y∂x
=

∂2F

∂x∂y

we must have
∂M

∂y
=
∂M

∂x
.

This is the condition we are looking for, since it is true that if this equality is valid, the
equation is exact.

Theorem 5.3 Let M,N be two real-valued functions which have continuous first partial
derivatives on some rectangle

R : |x− x0| 5 a, |y − y0| 5 b.

Then the equation
M(x, y) +N(x, y)y′ = 0

is exact in R if, and only if,
∂M

∂y
=
∂N

∂x
(5.21)

in R.

Proof:
We have already seen that if the equation is exact, then 5.21 is satisfied. Now suppose
5.21 is satisfied in R. We need to find a function F satisfying

∂F

∂x
= M,

∂F

∂y
= N.

To see how to do this, we note that if we had such a function then

F (x, y)− F (x0, y0) = F (x, y)− F (x0, y) + F (x0, y)− F (x0, y0)

=

∫ 2

x0

∂F

∂x
(s, y)ds+

∫ y

s0

∂F

∂y
(x0, t) dt

=

∫ x

x0

M(s, y)ds+

∫
y0

N (x0, t) dt.

Similarly we would have

F (x, y)− F (x0, y0) = F (x, y)− F (x, y0) + F (x, y0)− F (x0, y0)

=

∫ s

y0

∂F

∂y
(x, t)dt+

∫ z

x0

∂F

∂x
(s, y0) ds

=

∫
y0

N(x, t)dt+

∫ z

x0

M (s, y0) ds. (5.22)
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We now define F by the formula

F (x, y) =

∫ x

x0

M(s, y)ds+

∫ y

y0

N (x0, t) dt. (5.23)

This definition implies that F (x0, y0) = 0, and that

∂F

∂x
(x, y) = M(x, y),

for all (x, y) in R. From 5.22 we would guess that F is also given by

F (x, y) =

∫ y

y0

N(x, t)dt+

∫ x

x0

M (s, y0) ds. (5.24)

This is in fact true, and is a consequence of the assumption 5.21. Once this has been
shown, it is clear from 5.24 that

∂F

∂y
(x, y) = N(x, y),

for all (x, y) in R, and we have found our F . In order to show that 5.24 is valid, where
F is the function given by 5.23, let us consider the difference

F (x, y)−
[∫ y

y0

N(x, t)dt+

∫ x

x0

M (s, y0) ds

]
=

∫ x

x0

[M(s, y)−M (s, y0)] ds−
∫ ν

y0

[N(x, t)−N (x0, t)] dt

=

∫ x

x0

[∫ y

y0

∂M

∂y
(s, t)dt

]
ds−

∫ ν

y0

[∫ x

x0

∂N

∂x
(s, t)ds

]
dt

=

∫ x

x0

∫ ν

y0

[
∂M

∂y
(s, t)− ∂N

∂x
(s, t)

]
dsdt,

which is zero by virtue of 5.21.

Example 5.3 Let us consider the equation

y′ =
3x2 − 2xy

x2 − 2y
(5.25)

which we write as (
3x2 − 2xy

)
dx+

(
2y − x2

)
dy = 0.

Here
M(x, y) = 3x2 − 2xy, N(x, y) = 2y − x2,

and a computation shows that

∂M

∂y
(x, y) =

∂N

∂x
(x, y) = −2x,
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which shows that our equation is exact for all x, y. To find an F we could use either of
the two formulas 5.23 or 5.24, but the following way is often simpler. We know there is
an F such that

∂F

∂x
= M,

∂F

∂y
= N.

Thus F satisfies
∂F

∂x
(x, y) = 3x2 − 2xy,

which implies that for each fixed y,

F (x, y) = x3 − x2y + f(y), (5.26)

where f is independent of x. Now ∂F/∂y = N tells us that

−x2 + f ′(y) = 2y − x2

or that
f ′(y) = 2y.

Thus a choice for f is given by f(y) = y2, and placing this back into 5.26 we obtain finally

F (x, y) = x3 − x2y + y2.

Any differentiable function φ which is defined implicitly by a relation

x3 − x2y + y2 = c, (5.27)

where c is a constant, will be a solution of 5.25, and all solutions of 5.25 arise in this
way. Often the solutions are identified with the relations 5.27. It is proved in advanced
calculus texts that 5.27 will define a unique differentiable function φ near, and passing
through, a given point ( x0, y0 ) provided that

F (x0, y0) = c

and that
∂F

∂y
(x0, y0) 6= 0.

Notice that the only points (x0, y0) satisfying 5.27 for which

∂F

∂y
(x0, y0) = 0

are those satisfying
−x2

0 + 2y0 = 0

and these are precisely the points where the given equation 5.25 is not defined. Thus,
if (x0, y0) is a point for which (3x2 − 2xy) / (x2 − 2y) is defined, there will be a unique
solution of 5.25 whose graph passes through (x0, y0).

Let us sum up

1. We have discussed the significance of exact differential equations and it’s solu-
tions.
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2. Finally, we solved some illustrative examples.

Check your progress

3. The differential equation xdy − ydx = 0 represents
(a) Parabolas (b) Straight lines (c) Circles (d) None of these

4. For the differential equation M(x, y) +N(x, y)y′ = 0 to be exact if
(a) ∂M

∂x
= ∂N

∂y
(b) ∂M

∂y
= ∂N

∂x
(c) ∂2M

∂2x
= ∂2N

∂2y
(d) None of these

5.4 The method of successive approximation

We now face up to the general problem of finding solutions of the equation

y′ = f(x, y), (5.28)

where f is any continuous real-valued function defined on some rectangle

R : |x− x0| 5 a, |y − y0| 5 b, (a, b > 0),

in the real (x, y)-plane. Our object is to show that on some interval I containing x0

there is a solution φ of 5.28 satisfying

φ(x0) = y0. (5.29)

By this we mean there is a real-valued differential function φ satisfying 5.29 such that
the points (x, φ(x)) are in R for x in I, and

φ′(x) = f(x, φ(x)),

for all x in I. Such a function φ is called a solution to the initial value problem

y′ = f(x, y), y(x0) = y0 (5.30)

on I. Our first step will be to show that the initial value problem is equivalent to an
integral equation, namely

y = y0 +

∫ x

x0

f(t, y) dt (5.31)

on I. By a solution of this equation on I is meant a real-valued continuous function φ
on I such that (x, φ(x)) is in R for all x in I, and

φ(x) = y0 +

∫ x

x0

f(t, φ(t)) dt, (5.32)

for all x in I.

Theorem 5.4 A function φ is a solution of the initial value problem 5.30 on an interval
I if and only if it is a solution of the integral equation 5.31 on I.
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Proof:
Assume that φ is a solution of the initial value problem on

y′ = f(x, y), y(x0) = y0

⇒ φ′(x) = f(x, φ(x)) and φ(x0) = y0

φ′(t) = f(t, φ(t)) (5.33)

on I. Since φ is continuous on I, and f is continuous and the rectangle R, the function
F defined by

F (t) = f(t, φ(t))

is continuous on I. Integrating 5.33 from x0 to x we obtain∫ x

x0

φ′tdt =

∫ x

x0

f(t, φ(t))dt

[φ(t)]xx0 =

∫ x

x0

f(t, φ(t))dt

φ(x)− φ(x0) =

∫ x

x0

f(t, φ(t))dt

φ(x) = φ(x0) +

∫ x

x0

f(t, φ(t))dt

and since φ(x0) = y0 we see that φ is a solution of 5.31.

y = y0 +

∫ x

x0

f(t, y)dt.

Conversely, assume that φ is a solution of the integral equation

y = y0 +

∫ x

x0

f(t, y)dt

φ(x) = φ(x0) +

∫ x

x0

f(t, φ(t))dt. (5.34)

Differentiating with respect to x,using the fundamental theorem of integral calculus,
that

φ′(x) = 0 + f(x, φ(x))

φ′(x) = f(x, φ(x)),

for all x on I. Moreover from 5.34 it is clear that φ(x0) = y0, and thus φ is a solution
of the initial value problem y′ = f(x, y), y(x0) = y0. We now solving 5.31. As a first
approximation to a solution we consider the function φ0 defined by

φ(x0) = y0.

It looks like you are describing a process to solve an initial value problem using suc-
cessive approximations or iterations. The method you’re describing is closely related

138



to the Picard iteration method, which is used to approximate solutions to differential
equations.

Given the initial value problem of the form:

y′(x) = f(x, y(x)), y(x0) = y0.

The Picard iteration method defines a sequence of function φn(x) that converge to the
solution of the initial value problem. Here is how the process works:

• Initial Function: Start with the initial approximation φ0(x) = y0.

• Successive approximation : Define the successive approximation by iterating the
integral equation:

φn+1(x) = y0 +

∫ x

x0

f(t, φn(t))dt.

This process can be summarized as follows:

• Initial approximation:
φ0(x) = y0.

• First iteration:
φ1(x) = y0 +

∫ x

x0

f(t, φ0(t))dt.

Since φ0(t) = y0,this simplifies to:

φ1(x) = y0 +

∫ x

x0

f(t, y0)dt.

• Second iteration:
φ2(x) = y0 +

∫ x

x0

f(t, φ1(t))dt.

• General iteration:

φk+1(x) = y0 +

∫ x

x0

f(t, φk(t))dt (k = 0, 1, 2, · · · ). (5.35)

Taking the limit of this sequence as k →∞ gives the solution to the integral equation
φk(x)→ φ(x),

φ(x) = lim
k→∞

φk(x).

Therefore the solution to the original differential equation can be expressed as:

φ(x) = y0 + +

∫ x

x0

f(t, φ(t))dt.

This limit, if it exists and unique is the solution to the initial value problem y′(x) =
f(x, y(x)) with the initial condition y(x0) = y0. Thus φ would be our desired solution.
We call the functions φ0, φ0φ0, · · · defined by 5.35 successive approximations to a solu-
tion of the integral equation 5.31 or the initial value problem 5.30. One way to picture
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the successive approximation is to think of a machine S (for solving) which converts
functions φ into new functions S(φ) defined by

S(φ)(x) = y0 +

∫
x0

xf(t, φ(t))dt.

A solution of the initial value problem 5.30 would then be a function φ which moves
through the machine untouched, that is, a function satisfying S(φ) = φ. Starting
with φ0(x) = y0, we see that S converts φ0 into φ1, and then φ1 into φ2 . In general
S(φk) = φk+1, and ultimately we end up with a φ such that S(φ) = φ.

Figure 5.1:

Of course we need to show that the φk merit the name, that is, we need to show
that all the φk exist on some interval I containing x0, and that they converge there to
a solution of 5.31 or of 5.30. Before doing this let us consider an example

y′ = xy, y(0) = 1, (5.36)

where x0 = 0, y0 = 1. The integral equation corresponding to this problem is

y = y0 +

∫ x

x0

f(t, y0)dt

y = 1 +

∫ x

0

ty dt,

and the successive approximation are given by

φ(x0) = y0

⇒ φ(x0) = 1,

φk+1(x) = 1 +

∫ x

0

tφk(t) dt (k = 0, 1, 2, · · · ).

Thus

φ1(x) = 1 +

∫ x

0

t dt,

= 1 +

[
t2

2

]x
0

= 1 +
x2

2
,

φ2(x) = 1 +

∫ x

0

f

(
t, 1 +

t2

2

)
dt
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= 1 +

∫ x

0

t

(
1 +

t2

2

)
dt,

= 1 +

∫ x

0

t dt+
t3

2
dt,

= 1 +

[
t2

2
+

t4

2.4

]x
0

,

= 1 +
x2

2
+
x4

2.4

and it may be established by induction that

φk(x) = 1 +
x2

2
+

1

2!

(
x2

2

)2

+ · · ·+ 1

k!

(
x2

2

)k
.

We recognize φk(x) as partial sum for the series expansion of the

φ(x) = ex
2/2.

We know that this series converges for all real x and this just means that

φk(x)→ φ(x), (k →∞),

for all real x. The function φ is the solution of the problem 5.36. Let us now show that
there is an interval I containing x0 where all the functions φk, k = 0, 1, · · · defined by
5.35 exist. Since f is continuous R, it is bounded there, that is, there exists a constant
M > 0 such that |f(x, y)| ≤ M, for all (x, y) in R∗. Let α be the smaller of the two
numbers a, b/M . Then we prove that the φk are all defined on |x− z0| ≤ α.

Theorem 5.5 The successive approximations φk , defined by φ(x0) = y0 exist as continu-
ous functions on I : |x − x0| 5 α = min [a, b/M ], and (x, φk) is in R for x in I. Indeed,
the φk satisfy

|φk(x)− y0| 5M |x− x0|, (5.37)

for all x in I.

Figure 5.2:
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Proof:
We prove this theorem by induction method. We have φ(x0) = y0. Clearly φ0 exists on
I as a continuous functions, and satisfies 5.37 with k = 0. Now k = 1,

φ1(x) = y0 +

∫ x

x0

f(t, φ0(t))dt

φ1(x) = y0 +

∫ x

x0

f(t, y0)dt. (5.38)

Since f is continuous on R the function f(t, y0) is continuous on I.

φ1(x)− y0 =

∫ x

x0

f(t, y0)dt

|φ1(x)− y0| ≤
∣∣∣∣∫ x

x0

f(t, y0)dt

∣∣∣∣
=

∫ x

x0

|Mdt| = M

∫ x

x0

|dt|

= M |t|xx0 = M |x− x0|
|φ1(x)− y0| ≤ M |x− x0|

Figure 5.3:

which shows that satisfies φ1 the inequality 5.37. Since f is continuous on R the
function F0 defined by

F0(t) = f(t, y0)

is continuous on I. Thus φ1, which is given by

φ1(x) = y0 +

∫ x

x0

F0(t)dt
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continuous on I. Now assume the theorem has been proved for the functions φ0, φ1, ·, φk.
We prove it is valid for φk+1. Indeed the proof is just a repetition of the above. We
know that (t, φk(t)) is in R for t in I. Thus the function Fk given by

Fk(t) = f(t, φk(t))

exists for t in I. It is continuous on I since f is continuous on R, and φk is continuous
on I. Therefore φk+1, which is given by

φk+1(x) = y0 +

∫ x

x0

Fk(t)dt,

exists as a continuous function on I. Moreover

|φk+1(x)− y0| 5
∣∣∣∣∫ x

x0

|Fk(t)| dt
∣∣∣∣ 5M |x− x0|,

which shows that φk+1 satisfies 5.37. The theorem is thus proved by induction.
Note:
Since for x in I, |x− x0| 5 b/M , the inequality 5.37 implies that

|φk(x)− y0| 5 b

for z in I, which shows that the points (x, φk(x)) are in R for x in I.
The precise geometric interpretation of the inequality 5.37 is that the graph of each
φk, lies in the region T in R bounded by the two lines

y − y0 = M(x− x0), y − y0 = −M(x− x0)

x− x0 = α, x− x0 = −α

see Figs 5.2 and 5.3.

5.4.1 The Lipschitz condition

Let f be a function defined for (x, y) in a set S. We say f satisfies a Lipschitz condition
on S if there exists a constant K > 0 such that

|f (x, y1)− f (x, y2)| ≤ K |y1 − y2| ,

for all (x, y1) , (x, y2) in S. The constant K is called a Lipschitz constant. If f is continu-
ous and satisfies a Lipschitz condition on the rectangle R, then the successive approxi-
mations converge to a solution of the initial value problem on |x− x0| 5 α. Before we
prove this, let us remark that a Lipschitz condition is a rather mild restriction on f .

Theorem 5.6 Suppose S is either a rectangle

|x− x0| ≤ a, |y − y0| ≤ b, (a, b > 0),

or a strip
|x− x0| ≤ a, |y| <∞, (a > 0),

and that f is a real-valued function defined on S such that ∂f/∂y exists, is continuous on
S, and ∣∣∣∣∂f∂y (x, y)

∣∣∣∣ ≤ K, ((x, y) in S)

for some K > 0. Then f satisfies a Lipschitz condition on S with Lipschitz constant K.
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Proof:
We have

f (x, y1)− f (x, y2) =

∫ y1

y2

∂f

∂y
(x, t)dt,

and hence

|f (x, y1)− f (x, y2)| ≤
∣∣∣∣∫ y1

y2

∣∣∣∣ ∂f∂y (x, t)|dt| ≤ K |y1 − y2| ,

for all (x, y1) , (x, y2) in S.
An example of a function satisfying a Lipschitz condition is

f(x, y) = xy2

on
R : |x| ≤ 1, |y| ≤ 1.

Here ∣∣∣∣∂f∂y (x, y)

∣∣∣∣ = |2xy| 5 2,

for (x, y) on R. This function does not satisfy a Lipschitz condition on the strip

S : |x| ≤ 1, |y| <∞,

since ∣∣∣∣f (x, y1)− f(x, 0)

y1 − 0

∣∣∣∣ = |x‖y1| ,

which tends to infinity as |y1| → ∞, if |x| 6= 0. An example of a continuous function
not satisfying a Lipschitz condition on a rectangle is

f(x, y) = y2/3

on
R : |x| ≤ 1, |y| ≤ 1.

Indeed, if y1 > 0,
|f (x, y1)− f(x, 0)|

|y1 − 0|
=
y

2/3
1

y1

=
1

y
1/2
1

,

which is unbounded as y1 → 0.
Let us sum up

1. We have defined the initial function, Initial and successive approximation.

2. We have discussed the significance and various methods of successive approxi-
mations.

3. We have characterized the Lipschitz condition.

4. Finally, we solved some suitable examples.
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Check your progress

5. If S is a strip |x − x0| ≤ a, |y| < ∞ (a,0) and if f is real valued continuous
function defined on S and ∂f

∂y
exist and also | ∂

∂y
f(x, y)| ≤ K; (x, y) ∈ S for a

positive constant K.
(a) f satisfies Lipschitz condition on S with Lipschitz constant K.
(b) f does not satisfies Lipschitz condition on S with Lipschitz constant K.
(c) Both (A) and (B) are true.
(d) None of these.

6. A function satisfying Lipschitz condition is f(x, y) = xy2 on R : |x| ≤ 1, |y| ≤ 1
(a) 4 (b) 1 (c) 3 (d) 2

5.5 Convergence of the successive approximation

We now prove the main existence theorem.

Theorem 5.7 (Existence Theorem). Let f be a continuous real-valued functions on the
rectangle R : |x − x0| 5 a, |y − y0| 5 b (a, b > 0), and let |f(x, y)| 5 M, for all
(x, y) in R. Further suppose that f satisfies a Lipschitz condition with constant K in R.
Then the successive approximations

φ0(x) = y0, φk+1(x) = y0 +

∫ x

x0

f(t, φk(t)) dt, (k = 0, 1, 2, · · · ),

converge on the internal I : |x − x0| ≤ a = min{a, b/M} to a solution φ of the initial
value problem y′ = f(x, y), y(x0) = y0 on I.

Proof:
a. Convergence of {φk(x)} :
The key to the proof is the observation that φk may be written as

φk = φ0 + (φ1 − φ0) + (φ2 − φ1) + · · ·+ (φk − φk−1),

and, hence φk(x) is a partial sum of the series

φk = φ0 +
k∑
p=1

(φp − φp−1)

φk(x) = φ0(x) +
∞∑
p=1

[φp(x)− φp−1(x)] . (5.39)

Therefore to show that the sequence |φk(x)| converges is equivalent to showing that
the series 5.39 converges. To prove the latter we must estimate the terms φp(x) −
φp−1(x) of this series. By Theorem 5.5 the functions φp all exist as continuous functions
on I, and (x1, φp(x)) is in R for x in I. Moreover, as shown in Theorem 5.5,

|φ1(x)− φ0(x)| ≤M |x− x0| (5.40)
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for x in I. Writing down the relations defining φ2 and φ1,

k = 0, φ1(x) = y0 +

∫ x

x0

f(t, φ0(t)) dt, (5.41)

k = 1, φ2(x) = y0 +

∫ x

x0

f(t, φ1(t)) dt, (5.42)

and subtracting 5.41 from 5.42, we obtain

φ2(x)− φ1(x) =

∫ x

x0

[f(t, φ1(t))− f(t, φ0(t))] dt.

Therefore

|φ2(x)− φ1(x)| ≤
∣∣∣∣∫ x

x0

[f(t, φ1(t))− f(t, φ0(t))] dt

∣∣∣∣
=

∫ x

x0

|f(t, φ1(t))− f(t, φ0(t))| |dt|,

and since f satisfies the Lipschitz condition

|f(x, y1)− f(x, y2)| ≤ K|y1 − y2|,

we have

|φ2(x)− φ1(x)| ≤ K

∣∣∣∣∫ x

x0

|φ1(t)− φ0(t)|dt
∣∣∣∣ .

Using 5.40 we obtain

|φ2(x)− φ1(x)| ≤ KM

∣∣∣∣∫ x

x0

|t− x0|dt
∣∣∣∣ .

Thus, if x ≥ x0,

|φ2(x)− φ1(x)| ≤ KM

∫ x

x0

(t− x0)dt

= KM

[(
t− x0

2

)2
]x
x0

= KM

(
x− x0

2

)2

. (5.43)

In case x ≤ x0,

|φ2(x)− φ1(x)| ≤ KM

∫ x

x0

(t− x0)dt

= −KM
∫ x0

x

(t− x0)dt

= −KM

[(
t− x0

2

)2
]x0
x
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= KM

(
x− x0

2

)2

. (5.44)

We shall prove by induction that

|φp(x)− φp−1(x)| 5 MKp−1|x− x0|p

p!
, (5.45)

for all x in I. We have seen that this is true for p = 1 and p = 2. Let us assume x ≥ x0;
the proof is similar for x ≤ x0. Assume 5.45 for p = m. Using the definition of φm+1

and φm, we obtain

φm+1(x) = y0 +

∫ x

x0

f(t, φm(t)) dt,

φm(x) = y0 +

∫ x

x0

f(t, φm−1(t)) dt,

φm+1(x)− φm(x) =

∫ x

x0

[f(t, φm(t))− f(t, φm−1(t))] dt, (5.46)

and thus

|φm+1(x)− φm(x)| ≤
∣∣∣∣∫ x

x0

[f(t, φm(t))− f(t, φm−1(t))] dt

∣∣∣∣ ,
=

∫ x

x0

|f(t, φm(t))− f(t, φm−1(t))| dt.

Using the Lipschitz condition we get

|φm+1(x)− φm(x)| ≤ K

∣∣∣∣∫ x

x0

|φm(t)− φm−1(t)|dt
∣∣∣∣ .

= K

∫ x

x0

|φm(t)− φm−1(t)|dt.

=
MKm−1|x− x0|m

m!

= MKm |x− x0|m+1

(m+ 1)!
.

This is just 5.45 for p = m+1, and hence 5.45 is valid for all p = 1, 2, · · · , by induction.
It follows from 5.45 that the infinite series

φk(x) ≤ φ0(x) +
∞∑
p=1

[φp(x)− φp−1(x)] (5.47)

is absolutely convergent on I, that is, the series

|φ0(x)|+
∞∑
p=1

|φp(x)− φp−1(x)| (5.48)
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is convergent on I. Indeed, from 5.45 we see that

∞∑
p=1

|φp(x)− φp−1(x)| ≤
∞∑
p=1

MKp−1|x− x0|p

p!

=
M

K

∞∑
p=1

Kp|x− x0|p

p!

=
M

K
eK|x−x0|

which shows that the p-th term of the series in 5.48 is less than or equal to M/K times
the p-th term of the power series for eK|x−x0|. Since the power series for eK|x−x0| is
convergent, the series 5.48 is convergent for x in I. This implies that the series 5.39 is
convergent on I. Therefore the k-th partial sum of 5.39, which is just φk(x) tends to a
limit φ(x) as k →∞, for each x in I.

b. Properties of the limit φ:
This limit function φ is a solution to our problem on I. First, let us show that φ is
continuous on I. This may be seen in the following way. If x1, x2 are in I

φk+1(x1) = y0 +

∫ x1

x0

f(t, φk(t)) dt,

φk+1(x2) = y0 +

∫ x2

x0

f(t, φk(t)) dt,

|φk+1(x1)− φk+1(x2)| ≤
∣∣∣∣∫ x1

x2

f(t, φx(t)) dt

∣∣∣∣ ,
=

∫ x1

x2

|f(t, φx(t))| |dt|,

= M

∫ x1

x2

|dt|,

= M |x1 − x2|,

which implies, by letting k →∞,

|φ(x1)− φ(x2)| ≤M |x1 − x2|. (5.49)

This shows that as x2 → x1, φ(x2)→ φ(x1), that is, φ is continuous on I. Also, letting
x1 = x, x2 = x0 in 5.49 we obtain

|φ(x)− y0| ≤M |x− x0|,

which implies that the point (x, φ(x)) are in R for all x in I.
c. Estimate for |φ(x)− φk(x)| :
We now estimate |φ(x)− φk(x)|. We have

φ(x) = φ0(x) +
∞∑
p=1

[φp(x)− φp−1(x)] ,
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φk(x) = φ0(x) +
k∑
p=1

[φp(x)− φp−1(x)] .

Therefore, using 5.45, we find that

|φ(x)− φk(x)| =

∣∣∣∣∣
∞∑
p=1

[φp(x)− φp−1(x)]−
k∑
p=1

[φp(x)− φp−1(x)]

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

p=k+1

(φp(x)− φp−1(x))

∣∣∣∣∣
=

∞∑
p=k+1

|φp(x)− φp−1(x)| ,

=
∞∑

p=k+1

MKP |x− x0|P

KP !

=
∞∑

p=k+1

M

K

KP |x− x0|P

P !

=
M

K

∞∑
p=k+1

KPαP

P !

=
M

K

∞∑
p=k+1

(Kα)P

P !

=
M

K

[
(Kα)k+1

(k + 1)!
+

(Kα)k+2

(k + 2)!
+ · · ·

]
=

M

K

(Kα)k+1

(k + 1)!

[
1 +

Kα

(k + 2)
+

(Kα)2

(k + 2)(k + 3)
+ · · ·

]
=

M

K

(Kα)k+1

(k + 1)!

∞∑
p=0

(Kα)p

P !
k = 0, 1, 2, · · ·

<
M

K

(Kα)k+1

(k + 1)!
eKα. (5.50)

Letting εk = (Kα)k+1

(k+1)!
, we see that εk → 0 as k → ∞, since εk is a general term for the

series for eKα. In terms of εk may be written as

|φ(x)− φk(x)| 5 M

K
eKαεk, (5.51)

where εk = (Kα)k+1

(k+1)!
→ 0, |φ(x)− φk(x)| as k →∞

d. The limit φ is a solution:
To complete the proof we must show that φ(x) is a function of the initial value problem
y′ = f(x, y) , y(x0) = y0 that is, we have to prove that

φ(x) = y0 +

∫ x

x0

f(t, φ(t))dt (5.52)
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φ(x)− φ(x0) =

∫ x

x0

f(t, φ(t))dt,

for all x in I. The right side of 5.52 makes sense for φ is continuous on I, f is contin-
uous on R, and thus the function F is given by

F (t) = f(t, φ(t))dt,

is continuous on I. Now

φk+1(x) = y0 +

∫ x

x0

f(t, φk(t))dt

and φk+1(x)→ φ(x), as k →∞. Thus to prove 5.52 we must show that for each x in I∫ x

x0

f(t, φk(t))dt→
∫ x

x0

f(t, φ(t))dt (k →∞) (5.53)

we have

|φ(x)− φk+1(x)| =
∣∣∣∣∫ x

x0

f(t, φ(t))dt−
∫ x

x0

f(t, φk(t))dt

∣∣∣∣
5
∫ x

x0

|f(t, φ(t))− f(t, φk(t))|dt

= k

∫ x

x0

|φ(t)− φk(t)|dt (5.54)

using the fact that f satisfies a Lipschitz condition. The estimate 5.51 can now be used
in 5.52 to obtain∣∣∣∣∫ x

x0

f(t, φ(t))dt−
∫ x

x0

f(t, φk(t))dt

∣∣∣∣ 5 k

∫ x

x0

∣∣∣∣MK εke
Kα

∣∣∣∣ dt
= Mεke

Kα

∫ x

x0

|dt|

= Mεke
Kα(|x− x0|)→ 0,

which tends to zero as k →∞, for each x in I. This proves 5.53 hence that φ satisfies
5.52. Thus our proof of this theorem is now complete.

Theorem 5.8 The k-th successive approximation φk to the solution φ of the initial value
problem of the above theorem satisfies

|φ(x)− φk(x)| 5 M

K

(Kα)k+1

(k + 1)!
eKα,

for all x in I.

Let us sum up

1. We have discussed the existence for convergence of the successive approxima-
tion.
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2. We have proved the properties of limit function and k−th successive approxima-
tion.

Check your progress

7. The k-th successive approximation φk to the solution φ of the BVP satisfies
(a) |φ(x)− φk(x)| ≤ M

K
(Kα)k+1

(k+1)!
eKα (b) |φ(x)− φk(x)| ≤ M

K
(Kα)k+1

k!
eKα

(c) |φ(x)− φk(x)| ≤ M
K

(Kα)k+1

(k+1)!
eKα

2 (d) |φ(x)− φk(x)| ≤ M
K

(Kα)k+1

k!
eKα

2

8. state the existence theorem for successive approximation.

Summary
The focus of this unit is the theoretical aspect of ODEs, particularly the conditions

under which solutions exist and are unique. Topics discussed include:

• In-depth discussion of the conditions under which unique solutions to ODEs exist
(Picard’s theorem).

• An exact equation is a type of differential equation that can be solved by finding a
function whose total derivative matches the given equation. It is typically written
in the form:

M(x, y)dx+N(x, y)dy = 0

• The method of successive approximation (also known as Picard’s method) is an
iterative technique for solving differential equations by repeatedly refining an
initial guess for the solution. Starting from an initial estimate, the method gener-
ates a sequence of functions that converge to the exact solution of the differential
equation.

• The Lipschitz condition ensures that a function f(x, y) satiesfies |f(x1)+f(x2)| ≤
K|x1 +X2| for a constant K. It guarantees that the function’s behavior is not too
erratic, which is useful for ensuring the existence and uniqueness of solutions to
differential equations.

• The convergence of successive approximation ensures that if a differential equa-
tion satisfies the Lipschitz condition, then the sequence of approximations gener-
ated by the method will converge to the true solution. This convergence relies on
the iterative process refining the solution with each step based on the previous
approximation.

Glossary

• Variable separable: A differential equation is said to be separable if the variables
can be separated. To solve the equation it is integrated on both sides, i.e first
separating the variables and then integrating.

• Exact differential equation: A differential equation is said to be exact if it can
be obtained from its primitive equation directly by differentiation and without
involving any further process of reduction, elimination, multiplication, etc.

151



• Picard’s iteration method: A technique for finding approximate solutions to dif-
ferential equations by iteratively refining an initial guess. Each iteration involves
substituting the current approximation into the differential equation to generate
a new, hopefully more accurate, approximation.

• Iteration method: A numerical technique for finding approximate solutions by
repeatedly refining an initial guess using a defined iterative process.

• Lipschitz condition: The Lipschitz condition requires that the difference in func-
tion values is bounded by a constant times the difference in input values. This
ensures the function does not vary too quickly and helps in guaranteeing the
existence and uniqueness of solutions to differential equations.

Self-assesment questions

1. If the IVP satisfies Lipschitz condition, then it must have
(a) Only one solution (b) Infinite number of solution
(c) Unique solution (d) None of these

2. A function satisfying Lipschitz condition is f(x, y) = xy2 on R : |x| ≤ 1, |y| ≤ 1
(a) 4 (b) 1 (c) 3 (d) 2

3. For the IVP, dy
dx

= y2 + cos2(x), x > 0. The largest interval of existence of the
solution predicted by Picard’s theorem is,
(a) [0, 1] (b) [0, 1

2
] (c) [0, 1

3
] (d) [0, 1

4
]

4. Find out the function which does not satisfies a Lipschitz condition on rectangle
R : |x| ≤ 1, |y| ≤ 1?

(a) f(x, y) = xy
1
2 (b) f(x, y) = xy2 (c) f(x, y) = x2y2 (d) f(x, y) = y

2
3

5. Consider the differential equation (xy + x2) + (y2 − y)y′ = 0. Which of the
following statements is true.
(a) The differential equation is linear (b) Variables separable form
(c) The differential Equation is exact (d) None of these

6. The integrating factor of differential equation x2dy + y(x+ y)dx = 0, is

(a)
1

x
(b)

1

x2
(c)

1

x3
(d)

1

x4

7. Find out the differential equation dy
dx
− x tan(y − x) = 1, is

(a) homogeneous (b) variable seperable (c) linear (d) exact

8. Find out the differential equation (x+ 2y)(dx− dy) = dx+ dy, is
(a) linear (b) variable seperable (c) homogeneous (d) exact

9. One of the integrating factor of differential equation (y2−3xy)dx+(x2−xy)dy =
0, is

(a)
1

x2y2
(b)

−1

2x2y
(c)

1

xy2
(d)

1

xy
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10. Let y : R → R be differentiable satisfying the differential equations, dy
dx

= f(y),
x ∈ R; y(0) = y(1) = 0, where f : R → R is a Lipschitz continuous function.
Then,
(a) y(x) = 0 iff x ∈ 0, 1 (b) y is bounded
(c) y is strictly increasing (d) y′ is bounded.

EXERCISES

1. Find all real-valued solutions of the following equations:

(a) y′ = x2y

(b) yy′ = x

(c) y′ =
x+ x2

y − y2

(d) y′ =
ex−y

1 + ex

(e) y′ = x2y2 − 4x2.

2. (a) Show that the solution φ of

y′ = y2

which passes through the point (x0, y0) is given by

φ(x) =
y0

1− y0(x− x0)
.

(Note: The identically zero solution can be obtained from this formula by
letting y0 = 0.)

(b) For which x is φ a well-defined function?

(c) For which x is φ a solution of the problem

y′ = y2, y(x0) = y0?

3. (a) Find the solution of y′ = 2y
1
2 passing through the point (x0, y0), where

y0 > 0.

(b) Find all solutions of this equation passing through (x0, 0).

4. (a) (a) Show that the method of Ex. 5 can be used to reduce an equation of the
form

y′ = f

(
a1x+ b1y + c1

a2x+ b2y + c2

)
to a homogeneous equation.

(b) Solve the equation

y′ =
1

2

(
x+ y − 1

x+ 2

)2

.
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5. The equations below are written in the form M(x, y)dx + N(x, y)dy = 0, where
M , N exist on the whole plane. Determine which equations are exact there, and
solve these.

(a) 2xydx+ (x2 + 3y2)dy = 0

(b) (x2 + xy)dx+ xydy = 0

(c) exdx+ (ey(y + 1))dy = 0

(d) cosx cos2 ydx− sinx sin 2ydy = 0

(e) x2y3dx− x2y2dy = 0

(f) (x+ y)dx+ (x− y)dy = 0

(g) (2ye2x + 2x cos y)dx+ (e2x − x2 sin y)dy = 0

(h) (3x2 log |x|+ x2 + y)dx+ xdy = 0.

6. Even though an equationM(x, y)dx+N(x, y)dy = 0 may not be exact, sometimes
it is not too difficult to find a function u, nowhere zero, such that,

u(x, y)M(x, y)dx+ u(x, y)N(x, y)dy = 0

is exact. Such a function is called an integrating factor. For example,

ydx− xdy = 0

is not exact, but multiplying the equation by u(x, y) = 1
y2

makes it exact for y 6= 0.
Solutions are then given by y = cx. Find an integrating factor for each of the
following equations, and solve them.

(a) (2y3 + 2)dx+ 3xy2dy = 0

(b) cosx cos ydx− 2 sinx sin ydy = 0

(c) (5x3y2 + 2y)dx+ (3x4y + 2x)dy = 0

(d) (ey + xey)dx+ xeydy = 0
(Note: If you have trouble discovering integrating factors, do Exs. 3-5 first.)

7. (a) Under the same conditions as in Ex. 3, show that if

M(x, y)dx+N(x, y)dy = 0,

has an integrating factor u, which is a function of y alone, then

q =
1

N

(
∂M

∂y
− ∂N

∂x

)
is a continuous function of y alone.

(b) If q is continuous, and independent of x, show that an integrating factor is
given by

u(y) = eQ(y),

where Q is any function such that Q′ = q.
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8. Consider the linear equation of the first order

y′ + a(x)y = b(x),

where a, b are continuous on some interval I.

(a) Show that there is an integrating factor which is a function of x alone.
(Hint: Ex. 4.)

(b) Solve this equation, using an integrating factor.

9. Consider the initial value problem

y′ = 3y + 1, y(0) = 2.

(a) Show that all the successive approximations φ0, φ1, · · · exist for all real x.

(b) Compute the first four approximations φ0, φ1, φ2, φ3 to the solution.

(c) Compute the solution.

(d) Compare the results of (b) and (c).

10. For each of the following problems compute the first four successive approxima-
tions φ0, φ1, φ2, φ3:

(a) y′ − x2 + y2, y(0) = 0

(b) y′ = 1 + xy, y(0) = 1

(c) y′ = y2, y(0) = 0

(d) y′ = y2, y(0) = 1.

11. Consider the problem

y′ = x2 + y2, y(0) = 0,

on

R : |x| ≤ 1, |y| ≤ 1.

(a) Compute an upper bound M for the function f(x, y) = x2 + y2 on R.

(b) On what interval containing x = 0 will all the successive approximations
exist, and be such that their graphs are in R?

12. By computing appropriate Lipschitz constants, show that the following functions
satisfy Lipschits conditions on the sets S indicated:

(a) f(x, y) = 4x2 + y2, on S : |x| ≤ 1, |y| ≤ 1.

(b) f(x, y) = x2 cos2 y + y sin2 x on S : |x| ≤ 1, |y| <∞.

(c) f(x, y) = x3e−xy
2
, on S : 0 ≤ x ≤ a, |y| <∞, (a > 0)
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(d) f(x, y) = a(x)y2 + b(x)y + c(x), on S : |x| ≤ 1, |y| ≤ 2,
(a, b, c are continuous functions on |x| ≤ 1)

(e) f(x, y) = a(x)y + b(x), on S : |x| ≤ 1, |y| <∞,
(a, b are continuous functions on |x| ≤ 1)

13. (a) Show that the function f given by

f(x, y) = y
1
2

does not satisfy a Lipschits condition on

R : |x| ≤ 1, 0 ≤ y ≤ 1.

(b) Show that this f satisfies a Lipschits condition on any rectangle R of the
form

R : |x| ≤ a, b ≤ y ≤ c, (a, b, c > 0).

14. (a) Show that the function f given by

f(x, y) = x2|y|

satisfies a Lipschitz condition on

R : |x| ≤ 1, |y| ≤ 1.

(b) Show that ∂f
∂y

does not exist at (x, 0) if x 6= 0.

15. Consider the problem

y′ = 1− 2xy, y(0) = 0.

(a) Since the differential equation is linear, an expression can be found for the
solution. Find it.

(b) Consider the above problem on R:

R : |x| ≤ 1
2
, |y| ≤ 1.

If f(x, y) = 1− 2xy, show that

|f(x, y)| ≤ 2, ((z, y) ∈R),

and that all the successive approximations to the solution exist on |x| ≤ 1
2

and their graphs remain in R.

(c) Show that f satisfies a Lipschitz condition onR, with Lipschitz constantK =
1, and therefore by Theorem 5.7 the successive approximations converge to
a solution φ of the initial value problem on |x| ≤ 1

3
.

(d) Show that the approximation a satisfies

|φ(x)− φ3(x)| < 0.01

for |x| ≤ 1
2
.

(e) Compute φ3.
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16. Consider the problem

y′ = 1 + y2, y(0) = 0.

(a) Using separation of variables, find the solution φ of this problem. (It is not
difficult to convince oneself that the separation of variables technique gives
the only solution of the problem.) On what interval does φ exist?

(b) Show that all the successive approximations φ0, φ1, φ2 · ·· exist for all real x.

(c) Show that φk → φ(x) for each x satisfying |x| ≤ 1
2
. (Hint: Consider f(x, y) =

1 + y2 on

R : |x| ≤ 1
2
, |y| ≤ 1.

Show that α = 1
2
.)

Answers for check your progess
1. (a) 2. (b) 3. (b) 4. (b) 5. (a) 6. (d) 7. (a)
8. Existence Theorem: Let f be a continuous real-valued functions on the rectangle
R : |x − x0| 5 a, |y − y0| 5 b (a, b > 0), and let |f(x, y)| 5 M, for all (x, y) in R.
Further suppose that f satisfies a Lipschitz condition with constant K in R. Then the
successive approximations

φ0(x) = y0, φk+1(x) = y0 +

∫ x

x0

f(t, φk(t)) dt, (k = 0, 1, 2, · · · ),

converge on the internal I : |x− x0| ≤ a = min{a, b/M} to a solution φ of the initial
value problem y′ = f(x, y), y(x0) = y0 on I.
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